Skip to main content Accessibility help
×
Home
Hostname: page-component-5f95dd588d-7rwhl Total loading time: 0.293 Render date: 2021-10-28T17:21:37.632Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Diffusion in hydrogel-supported phospholipid bilayer membranes

Published online by Cambridge University Press:  16 April 2013

Chih-Ying Wang
Affiliation:
Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
Reghan J. Hill*
Affiliation:
Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
*
Email address for correspondence: reghan.hill@mcgill.ca

Abstract

We model a cylindrical inclusion (lipid or membrane protein) translating with velocity $U$ in a thin planar membrane (phospholipid bilayer) that is supported above and below by Brinkman media (hydrogels). The total force $F$ , membrane velocity, and solvent velocity are calculated as functions of three independent dimensionless parameters: $\Lambda = \eta a/ ({\eta }_{m} h)$ , ${\ell }_{1} / a$ and ${\ell }_{2} / a$ . Here, $\eta $ and ${\eta }_{m} $ are the solvent and membrane shear viscosities, $a$ is the particle radius, $h$ is the membrane thickness, and ${ \ell }_{1}^{2} $ and ${ \ell }_{2}^{2} $ are the upper and lower hydrogel permeabilities. As expected, the dimensionless mobility $4\mathrm{\pi} \eta aU/ F= 4\mathrm{\pi} \eta aD/ ({k}_{B} T)$ (proportional to the self-diffusion coefficient, $D$ ) decreases with decreasing gel permeabilities (increasing gel concentrations), furnishing a quantitative interpretation of how porous, gel-like supports hinder membrane dynamics. The model also provides a means of inferring hydrogel permeability and, perhaps, surface morphology from tracer diffusion measurements.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahearme, M., Yang, Y., Haj, A. J. E., Then, K. Y. & Liu, K.-K. 2005 Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications. J. R. Soc. Interface 2 (5), 455463.CrossRefGoogle Scholar
Al-Abdul-Wahid, M. S., Demill, C. M., Serwin, M. B., Prosser, R. S. & Stewart, B. A. 2012 Effect of juxtamembrane tryptophans on the immersion depth of synaptobrevin, an integral vesicle membrane protein. Biochim. Biophys. Acta 1818, 29942999.CrossRefGoogle ScholarPubMed
Alessandrini, A. & Facci, P. 2012 Nanoscale mechanical properties of lipid bilayers and their relevance in biomembrane organization and function. Micron 43, 12121223.CrossRefGoogle Scholar
An, Y. & Hubbell, J. A. 2000 Intraarterial protein delivery via intimally-adherent bilayer hydrogels. J. Control. Release 64, 205215.CrossRefGoogle ScholarPubMed
Batchelor, R., Windle, C. J., Buchoux, S. & Lorch, M. 2010 Cholesterol and lipid phases influence the interactions between serotonin receptor agonists and lipid bilayers. J. Biol. Chem. 285, 4140241411.CrossRefGoogle ScholarPubMed
Bayley, H. & Cremer, P. S. 2001 Stochastic sensors inspired by biology. Nature 413, 226230.CrossRefGoogle Scholar
Brameshuber, M., Weghuber, J., Ruprecht, V., Gombos, I., Horvath, I., Vigh, L., Eckerstorfer, P., Kiss, E., Stockinger, H. & Schutz, G. J. 2010 Imaging of mobile long-lived nanoplatforms in the live cell plasma membrane. J. Biol. Chem. 285, 4176541771.CrossRefGoogle Scholar
Brinkman, H. C. 1947 A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A 1, 2734.CrossRefGoogle Scholar
Bussell, S. J., Koch, D. L. & Hammer, D. A. 1994 The effect of hydrodynamic interactions on the tracer and gradient diffusion of integral membrane proteins in lipid bilayers. J. Fluid Mech. 258, 167190.CrossRefGoogle Scholar
Calvert, D., Wong, J. Y. & Giasson, S. 2004 Rheological monitoring of polyacrylamide gelation: importance of cross-link density and temperature. Macromolecules 37, 77627771.CrossRefGoogle Scholar
Castellana, E. T. & Cremer, P. S. 2006 Solid supported lipid bilayers: from biophysical studies to sensor design. Surf. Sci. Rep. 61, 429444.CrossRefGoogle Scholar
Evans, E. & Sackmann, E. 1988 Translational and rotational drag coefficients for a disk moving in a liquid membrane associated with a rigid substrate. J. Fluid Mech. 194, 553561.CrossRefGoogle Scholar
Farias, G. G., Cuitino, L., Guo, X., Ren, X., Jarnik, M., Mattera, R. & Bonifacino, J. S. 2012 Signal-mediated, ap-1/clathrin-dependent sorting of transmembrane receptors to the somatodendritic domain of hippocampal neurons. Neuron 75, 810823.CrossRefGoogle Scholar
Fuchs, P., Parola, A., Robbins, P. W. & Blout, E. R. 1975 Fluorescence polarization and viscosity of membrane lipids 3t3 cells. Proc. Natl Acad. Sci. USA 72, 33513354.CrossRefGoogle ScholarPubMed
Grandshteyn, I. S. & Ryzhik, I. M. 1965 Tables of Integrals, Series and Products. Academic.Google Scholar
Grattoni, C. A., Al-Sharji, H. H., Yang, C., Muggeridge, A. H. & Zimmerman, R. W. 2001 Rheology and permeability of corsslinked polyacrylamide gel. J. Colloid Interface Sci. 240, 601607.CrossRefGoogle Scholar
Haque, M. A., Kamita, G., Kurokawa, T., Tsujii, K. & Gong, J. P. 2010 Unidirectional alignment of lamellar bilayer in hydrogel: one-dimensional swelling, anisotropic modulus, and stress/strain tunable structural color. Adv. Mater. 22, 51105114.CrossRefGoogle ScholarPubMed
von Heijne, G. 2007 Membrane-protein topology. Nature Rev. Mol. Cell Biol. 7, 910918.Google ScholarPubMed
Hildebrand, F. B. 1956 Advanced Calculus for Engineers. Prentice Hall.Google Scholar
Hoare, T. R. & Kohane, D. S. 2008 Hydrogels in drug delivery: progress and challenges. Polymer 49, 19932007.CrossRefGoogle Scholar
Hughes, B. D., Pailthorpe, B. A. & White, L. R. 1981 The translational and rotational drag on a cylinder moving in a membrane. J. Fluid Mech. 110, 349372.CrossRefGoogle Scholar
Johnson, E. M. & Deen, W. M. 1996 Hydraulic permeability of agarose gels. AIChE J. 42, 12201224.CrossRefGoogle Scholar
Jülichera, R., Krusea, K., Prost, J. & Joanny, J.-F. 2007 Active behavior of the cytoskeleton. Phys. Rep. 449, 328.CrossRefGoogle Scholar
Kiser, P. F., Wilson, G & Needham, D. 1998 A synthetic mimic of the secretory granule for drug delivery. Nature 394, 459462.Google ScholarPubMed
Lomize, M. A., Lomize, A. L., Pogozheva, I. D. & Mosberg, H. I. 2006 OPM: orientations of proteins in membranes database. Bioinformatics 22 (5), 623625.CrossRefGoogle ScholarPubMed
Lucas, S. K. 1995 Evaluating infinite integrals involving products of Bessel functions of arbitrary order. J. Comput. Appl. Maths 64, 269282.CrossRefGoogle Scholar
Magnus, W., Oberhettinger, F. & Soni, R. P. 1966 Formulas and Theorems for the Special Functions of Mathematical Physics. Springer.CrossRefGoogle Scholar
Meyer, H. W., Westermann, M., Stumpf, M., Richter, W., Ulrich, A. S. & Hoischen, C. 1998 Minimal radius of curvature of lipid bilayers in the gel phase state corresponds to the dimension of biomembrane structures‘caveolae’. J. Struct. Biol. 124, 7787.CrossRefGoogle Scholar
Nicodemus, G. D. & Bryant, S. J. 2008 Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Engng B - Rev. 14, 149165.CrossRefGoogle ScholarPubMed
Noble, G. T., Flitsch, S. L., Liem, K. P. & Webb, S. J. 2009 Assessing the cluster glycoside effect during the binding of concanavalin a to mannosylated artificial lipid rafts. Org. Biomol. Chem. 7, 52455254.CrossRefGoogle ScholarPubMed
Okano, T. 1993 Molecular design of temperature-responsive polymers as intelligent materials. Adv. Polym. Sci. 110, 179197.CrossRefGoogle Scholar
Orsini, F., Cremona, A., Arosio, P., Corsetto, P. A., Montorfano, G., Lascialfari, A. & Rizzo, A. M. 2012 Atomic force microscopy imaging of lipid rafts of human breast cancer cells. Biochim. Biophys. Acta 1818, 29432949.CrossRefGoogle Scholar
Pike, L. J. 2008 The challenge of lipid rafts. J. Lipid Res. 50, 323328.CrossRefGoogle ScholarPubMed
Ruel-Gariépy, E., Leclair, G., Hildgen, P., Gupta, A. & Leroux, J.-C. 2002 T hermosensitive chitosan-based hydrogel containing liposomes for the delivery of hydrophilic molecules. J. Control. Release 82, 373383.CrossRefGoogle Scholar
Sackmann, E. 1996 Supported membranes: scientific and practical applications. Science 271, 4348.CrossRefGoogle ScholarPubMed
Sackmann, E. & Tanaka, M. 2000 Supported membranes on soft polymer cushions: fabrication, characterization and applications. Trends Biotechnol. 18, 5864.CrossRefGoogle ScholarPubMed
Saffman, P. G. 1976 Brownian motion in thin sheets of viscous fluid. J. Fluid Mech. 73, 593602.CrossRefGoogle Scholar
Saffman, P. G. & Delbruck, M. 1975 Brownian motion in biological membranes. Proc. Natl Acad. Sci. USA 72, 31113113.CrossRefGoogle ScholarPubMed
Sneddon, I. N. 1966 Mixed Boundary Value Problems in Potential Theory. John Wiley & Sons.Google Scholar
Steinhoff, G., Purrucker, O., Tanaka, M., Stutzmann, M. & Eickhoff, M. 2003 ${\mathrm{Al} }_{x} {\mathrm{Ga} }_{1- x} \mathrm{N} $ -A new material system for biosensors. Adv. Funct. Mater. 13 (11), 841846.CrossRefGoogle Scholar
Stone, H. A. & Ajdari, A. 1998 Hydrodynamics of particles embedded in a flat surfactant layer overlying a subphase of finite depth. J. Fluid Mech. 369, 151173.Google Scholar
Sunamoto, J., Sato, T., Hirota, M., Fukushima, K., Hiratani, K. & Hara, K. 1987 A newly developed immunoliposome – an egg phosphatidylcholine liposome coated with pullulan bearing both a cholesterol moiety and an IgMs fragment. Biochim. Biophys. Acta 898, 323330.CrossRefGoogle ScholarPubMed
Tanzosh, J. P. & Stone, H. A. 1995 Transverse motion of a disk through a rotating viscous fluid. J. Fluid Mech. 301, 295324.CrossRefGoogle Scholar
Tokita, M. & Tanaka, T. 1991 Friction coefficient of polymer networks of gels. J. Chem. Phys. 95 (6), 46134619.CrossRefGoogle Scholar
Tranter, C. J. 1966 Integral Transforms in Mathematical Physics. John Wiley & Sons.Google Scholar
Yeung, T., Georges, P. C., Flanagan, L. A., Marg, B., Ortiz, M., Funaki, M., Nastaran, Z., Ming, W., Weaver, V. & Janmey, P. A. 2005 Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskel. 60, 2434.CrossRefGoogle ScholarPubMed
Zaitsev, S. Y., Solovyeva, D. O. & Nabiev, I. 2012 Thin films and assemblies of photosensitive membrane proteins and colloidal nanocrystals for engineering of hybrid materials with advanced properties. Adv. Colloid Interface Sci. 183–184, 1429.CrossRefGoogle ScholarPubMed
Zhao, J. & Granick, S. 2007 How polymer surface diffusion depends on surface coverage. Macromolecules 40, 12431247.CrossRefGoogle Scholar
2
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Diffusion in hydrogel-supported phospholipid bilayer membranes
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Diffusion in hydrogel-supported phospholipid bilayer membranes
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Diffusion in hydrogel-supported phospholipid bilayer membranes
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *