Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-d2wc8 Total loading time: 0.194 Render date: 2021-10-18T09:17:24.025Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Co-rotating stationary states and vertical alignment of geostrophic vortices with thin cores

Published online by Cambridge University Press:  25 February 1998

GEORGI G. SUTYRIN
Affiliation:
Institute of Geophysics and Planetary Physics, UCLA, Los Angeles, CA 90095, USA Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
JAMES C. McWILLIAMS
Affiliation:
Institute of Geophysics and Planetary Physics, UCLA, Los Angeles, CA 90095, USA National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307, USA
R. SARAVANAN
Affiliation:
National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307, USA

Abstract

We investigate the evolution of nearby like-sign vortices whose centres are at different vertical levels in a stably stratified rotating fluid. We employ two differently singularized representations of the potential vorticity distribution in the quasi-geostrophic equations (QG), in order to elucidate the pair-interaction behaviour previously seen in non-singular QG numerical solutions. The first is an analytically tractable conservative (Hamiltonian) elliptical-moment model (EM) for thin-core vortices, which exhibits a regime of very strong horizontal elongation of a vortex in response to the strain induced by its partner. We interpret this as an early evolutionary stage towards the irreversible dissipative merger and alignment interactions. This interpretation is strengthened by weakly dissipative numerical solutions of a thin-core contour-dynamics model (CD), which exhibit even further progress towards the completion of these vortex interactions in the same regime.

In the EM model we classify the co-rotating stationary states which exist always for vertically offset thin-core vortices. However, the mutual strain field among the vortices cannot be balanced by co-rotation in a weakly elongated stationary state for a certain class of neighbouring, but substantially non-aligned, vortex configurations, and our interpretive assumption is that such configurations will rapidly evolve in non-singular QG solutions towards a more aligned configuration through significantly non-conservative reorganizations of the potential vorticity field. Both the EM and CD models show qualitatively similar regime boundaries between evolutions with weakly and strongly deformed vortices. In particular, there is a fairly close correspondence between the occurrence of strong vortex elongation in the EM solutions and significant filamentation and splitting in the CD solutions.

Type
Research Article
Copyright
© 1998 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
19
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Co-rotating stationary states and vertical alignment of geostrophic vortices with thin cores
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Co-rotating stationary states and vertical alignment of geostrophic vortices with thin cores
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Co-rotating stationary states and vertical alignment of geostrophic vortices with thin cores
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *