Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-cssqh Total loading time: 0.234 Render date: 2021-06-15T02:06:17.016Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Controlling droplet bouncing and coalescence with surfactant

Published online by Cambridge University Press:  28 June 2016

K.-L. Pan
Affiliation:
Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
Y.-H. Tseng
Affiliation:
Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 81148, Taiwan, ROC
J.-C. Chen
Affiliation:
Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
K.-L. Huang
Affiliation:
Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
C.-H. Wang
Affiliation:
Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
M.-C. Lai
Affiliation:
Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30050, Taiwan, ROC
Corresponding
E-mail address:

Abstract

The collision between aqueous drops in air typically leads to coalescence after impact. Rebounding of the droplets with similar sizes at atmospheric conditions is not generated, unless with significantly large pressure or high impact parameters exhibiting near-grazing collision. Here we demonstrate experimentally the creation of a non-coalescent regime through addition of a small amount of water-soluble surfactant. We perform a direct simulation to account for the continuum and short-range flow dynamics of the approaching interfaces, as affected by the soluble surfactant. Based on the immersed-boundary formulation, a conservative scheme is developed for solving the coupled surface-bulk convection–diffusion concentration equations, which presents excellent mass preservation in the solvent as well as conservation of total surfactant mass. We show that the Marangoni effect, caused by non-uniform distributions of surfactant on the droplet surface and surface tension, induces stresses that oppose the draining of gas in the interstitial gap, and hence prohibits merging of the interfaces. In such gas–liquid systems, the repulsion caused by the addition of surfactant, as frequently observed in liquid–liquid systems such as emulsions in the form of an electric double-layer force, was found to be too weak to dominate in the attainable range of interfacial separation distances. These results thus identify the key mechanisms governing the impact dynamics of surfactant-coated droplets in air and imply the potential of using a small amount of surfactant to manipulate impact outcomes, for example, to prevent coalescence between droplets or interfaces in gases.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below.

References

Adalsteinsson, D. & Sethian, J 2003 Transport and diffusion of material quantities on propagating interfaces via level set methods. J. Comput. Phys. 185, 271288.CrossRefGoogle Scholar
Adam, J. R., Lindblad, N. R. & Hendricks, C. D. 1968 The collision, coalescence, and disruption of water droplets. J. Appl. Phys. 39, 51735180.CrossRefGoogle Scholar
Ashgriz, N. & Poo, J. Y. 1990 Coalescence and separation in binary collisions of liquid drops. J. Fluid Mech. 221, 183204.CrossRefGoogle Scholar
Bauer, W., Bertsch, G. F. & Schulz, H. 1992 Bubble and ring formation in nuclear fragmentation. Phys. Rev. Lett. 69, 18881891.CrossRefGoogle ScholarPubMed
Berger, M. J. & Colella, P. 1989 Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 6484.CrossRefGoogle Scholar
Berger, M. J. & Oliger, J. 1984 Adaptive mesh refinement for hyperbolic partial differential equaitons. J. Comput. Phys. 53, 484512.CrossRefGoogle Scholar
Bergeron, V., Bonn, D., Martin, J. Y. & Vovelle, L. 2000 Controlling droplet deposition with polymer additives. Nature 405, 772775.CrossRefGoogle ScholarPubMed
Bertalmio, M., Cheng, L. T., Osher, S. J. & Sapiro, G. 2001 Variational problems and partial differential equations on implicit surfaces. J. Comput. Phys. 174, 759780.CrossRefGoogle Scholar
Brazier-Smith, P. R., Jennings, S. G. & Latham, J. 1972 The interaction of falling water drops: coalescence. Proc. R. Soc. Lond. A 326, 393408.CrossRefGoogle Scholar
Burger, M. 2005 Numerical simulation of anisotropic surface diffusion with curvature-dependent energy. J. Comput. Phys. 203, 602625.CrossRefGoogle Scholar
Ceniceros, H. D. 2003 The effects of surfactants on the formation and evolution of capillary waves. Phys. Fluids 15 (1), 245256.CrossRefGoogle Scholar
Chen, J. C.2010 Surfactant effect on binary droplet collision. Taipei. Master thesis, National Taiwan University.Google Scholar
Chen, K. Y., Feng, K. A., Kim, Y. & Lai, M. C. 2011 A note on pressure accuracy in immersed boundary method for Stokes flow. J. Comput. Phys. 230, 43774383.CrossRefGoogle Scholar
Chen, K. Y. & Lai, M. C. 2014 A conservative scheme for solving coupled surface-bulk convection–diffusion equations with an application to interfacial flows with soluble surfactant. J. Comput. Phys. 257, 118.CrossRefGoogle Scholar
Chiu, H. H. 2000 Advances and challenges in droplet and spray combustion. I: toward a unified theory of droplet aerothermochemistry. Prog. Energy Combust. Sci. 26, 381416.CrossRefGoogle Scholar
Chou, P. C.2008 High-speed binary water droplet collision with different surface tension. Taipei: Master thesis, National Taiwan University.Google Scholar
Conlisk, A. T., Zambrano, H., Li, H., Kazoe, Y. & Yoda, M.2012 Particle-wall interactions in micro/nanochannels. In 50th AIAA Aerospace Sciences Meeting. AIAA, 2012–0089.Google Scholar
Dai, B. & Leal, L. G. 2008 The mechanism of surfactant effects on drop coalescence. Phys. Fluids 20, 040802.CrossRefGoogle Scholar
De Ruiter, J., Oh, J. M., Ende, D. & Mugele, F. 2012 Dynamics of collapse of air films in drop impact. Phys. Rev. Lett. 108, 074505.CrossRefGoogle Scholar
Driscoll, M. M. & Nageland, S. R. 2011 Ultrafast interference imaging of air in splashing dynamics. Phys. Rev. Lett. 107, 154502.CrossRefGoogle Scholar
Dziuk, G. & Elliott, C. M. 2007 Finite element on evolving surfaces. IMA J. Numer. Anal. 27, 262292.CrossRefGoogle Scholar
Eastoe, J. & Dalton, J. S. 2000 Dynamic surface tension and adsorption mechanisms of surfactants at the air–water interface. Adv. Colloid Interface Sci. 85, 103144.CrossRefGoogle ScholarPubMed
Eggleton, C. D. & Stebe, K. J. 1998 An adsorption-desorption-controlled surfactant on a deforming droplet. J. Colloid Interface Sci. 208, 6880.CrossRefGoogle ScholarPubMed
Elliott, C. M., Stinner, B., Styles, V. & Welford, R. 2011 Numerical computation of advection and diffusion on evolving diffuse interfaces. IMA J. Numer. Anal. 31, 786812.CrossRefGoogle Scholar
Grant, G., Brenton, J. & Drysdale, D. 2000 Fire suppression by water sprays. Prog. Energy Combust. Sci. 26, 79130.CrossRefGoogle Scholar
Gunn, R. 1965 Collision characteristics of freely falling water drops. Science 150, 695701.CrossRefGoogle ScholarPubMed
Hicks, P. D. & Purvis, R. 2010 Air cushioning and bubble entrapment in three-dimensional droplet impacts. J. Fluid Mech. 649, 135163.CrossRefGoogle Scholar
Illingworth, J. & Kittler, J. 1988 A survey of the Hough transform. Comput. Vis. Graph. Image Process. 44, 87116.CrossRefGoogle Scholar
Israelachvili, J. N. 2011 Intermolecular and Surface Forces, 3rd edn. Academic.Google Scholar
Jiang, X. & James, A. J. 2007 Numerical simulation of the head-on collision of two equal-sized drops with van der Waals forces. J. Engng Maths 59, 99121.CrossRefGoogle Scholar
Jiang, Y. J., Umemura, A. & Law, C. K. 1992 An experimental investigation on the collision behaviour of hydrocarbon droplets. J. Fluid Mech. 234, 171190.CrossRefGoogle Scholar
Kolinski, J. M., Rubinstein, S. M., Mandre, M., Brenner, M. P., Weitz, D. A. & Mahadevan, L. 2012 Skating on a film of air: drops impacting on a surface. Phys. Rev. Lett. 108, 074503.CrossRefGoogle ScholarPubMed
Kuan, C. K., Pan, K. L. & Shyy, W. 2014 Study on high-Weber-number droplet collision by a parallel, adaptive interface-tracking method. J. Fluid Mech. 759, 104133.CrossRefGoogle Scholar
Lai, M. C., Huang, C. Y. & Huang, Y. M. 2011 Simulating the axisymmetric interfacial flows with insoluble surfactant by immered boundary method. Intl J. Numer. Anal. Model. 8, 105117.Google Scholar
Lai, M. C., Tseng, Y. H. & Huang, H. 2008 An immersed boundary method for interfacial flow with insoluble surfactant. J. Comput. Phys. 227, 72797293.CrossRefGoogle Scholar
Lai, M. C., Tseng, Y. H. & Huang, H. 2010 Numerical simulation of moving contact lines with insoluble surfactant by immersed boundary method. Commun. Comput. Phys. 8, 735757.Google Scholar
Lamb, H. 1932 Hydrodynamics. Dover.Google Scholar
Leung, S., Lowengrub, J. S. & Zhao, H. K. 2011 A grid based particle method for high order geometrical motions and local inextensible flows. J. Comput. Phys. 230, 25402561.CrossRefGoogle Scholar
Lin, S. Y., Lee, Y. C., Yang, M. W & Liu, H. S. 2003 Surface equation of state of nonionic CE surfactants. Langmuir 19, 31643171.CrossRefGoogle Scholar
Lipp, M. M., Lee, K. Y. C., Zasadzinski, J. A. & Waring, A. J. 1996 Phase and morphology changes in lipid monolayers induced by SP-B protein and its amino-terminal peptide. Science 273, 11961198.CrossRefGoogle ScholarPubMed
Moretto, L. G., Tso, K., Colonna, N. & Wozniak, G. J. 1992 New Rayleigh–Taylor-like surface instability and nuclear multifragmentation. Phys. Rev. Lett. 69, 18841887.CrossRefGoogle ScholarPubMed
Nobari, M. R., Jan, Y.-J. & Tryggvason, G. 1996 Head on collision of drops – a numerical investigation. Phys. Fluid 8, 2942.CrossRefGoogle Scholar
Pan, K.-L. & Chen, J.-C.2012 Manipulation of droplet rebounding and separation using surfactant. In 50th AIAA Aerospace Sciences Meeting. AIAA Paper, 2012–0093.Google Scholar
Pan, K. L., Chou, P. C. & Tseng, Y. J. 2009 Binary droplet collision at high Weber number. Phys. Rev. E 80, 036301.Google ScholarPubMed
Pan, K. L. & Hung, C. Y. 2010 Droplet impact upon a wet surface with varied fluid and surface properties. J. Colloid Interface Sci. 352, 186193.CrossRefGoogle Scholar
Pan, K. L. & Law, C. K. 2007 Dynamics of droplet-film collision. J. Fluid Mech. 587, 122.CrossRefGoogle Scholar
Pan, K. L., Law, C. K. & Zhou, B. 2008 Experimental and mechanistic description of merging and bouncing in head-on binary droplet collision. J. Appl. Phys. 103, 064901.CrossRefGoogle Scholar
Perkins, W. R., Dause, R. B., Parente, R. A., Minchey, S. R., Neuman, K. C., Gruner, S. M., Taraschi, T. F. & Janofft, A. S. 1996 Role of lipid polymorphism in pulmonary surfactant. Science 273, 330332.CrossRefGoogle ScholarPubMed
Peskin, C. S. 1972 Flow patterns around heart valves: a nermical method. J. Comput. Phys. 10, 252271.CrossRefGoogle Scholar
Peskin, C. S. 1977 Numerical analysis of blood flow in the heart. J. Comput. Phys. 25, 220252.CrossRefGoogle Scholar
Peskin, C. S. 2002 The immersed boundary method. Acta Numerica 11, 479517.CrossRefGoogle Scholar
Petsev, D. N. 2000 Theoretical analysis of film thickness transition dynamics and coalescence of charged miniemulsion droplets. Langmuir 16, 20932100.CrossRefGoogle Scholar
Purvis, R. & Smith, F. T. 2004 Air-water interactions near droplet impact. Eur. J. Appl. Maths 15, 853871.CrossRefGoogle Scholar
Qian, J. & Law, C. K. 1997 Regimes of coalescence and separation in droplet collision. J. Fluid Mech. 331, 5980.CrossRefGoogle Scholar
Rätz, A. & Voigt, A. 2006 PDEs on surfaces – a diffuse interface approach. Commun. Math. Sci. 4, 575590.CrossRefGoogle Scholar
Stebe, K. J., Lin, S. Y. & Maldarelli, C. 1991 Remobilizing surfactant retarded fluid particle interfaces. I: stress-free conditions at the interfaces of micellar solutions of surfactants with fast sorption kinetics. Phys. Fluids A 3, 320.CrossRefGoogle Scholar
Tabor, R. F., Eastoe, J. & Dowding, P. 2009 Adsorption and desorption of nonionic surfactants on silica from toluene studied by ATR-FTIR. Langmuir 25, 97859791.CrossRefGoogle ScholarPubMed
Teigen, K. E., Li, X., Lowengrub, J. S., Wang, F. & Voigt, A. 2009 A diffuse interface approach for modeling transport, diffusion and adsorption/desorption of material quantities on a deformation interface. Commun. Math. Sci. 7, 10091037.Google Scholar
Unverdi, S. O. & Tryggvason, G. 1992 A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100, 2537.CrossRefGoogle Scholar
Valkovska, D. S. & Danov, K. D. 2000 Determination of bulk and surface diffusion coefficients from experiemntal data for thin liquid film drainage. J. Colloid Interface sci. 223, 314316.CrossRefGoogle Scholar
Vinokur, M. 1983 On one-dimensional stretching functions for finite-difference calculations. J. Comput. Phys. 50, 215234.CrossRefGoogle Scholar
Wadhwa, N., Vlachos, P. & Jung, S. 2013 Noncoalescence in the oblique collision of fluid jets. Phys. Rev. Lett. 110, 124502.CrossRefGoogle ScholarPubMed
Yang, X., Zhang, X., Li, Z. & He, G. 2009 A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations. J. Comput. Phys. 228, 78217836.CrossRefGoogle Scholar
Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38, 159192.CrossRefGoogle Scholar
Yeo, L. Y., Matar, O. K., Susana Perez de Ortiz, E. & Hewitt, G. F. 2003 Film drainage between two surfactant-coated drops colliding at constant approach velocity. J. Colloid Interface Sci. 257, 93107.CrossRefGoogle ScholarPubMed
Zhang, J., Eckmann, D. M. & Ayyaswamy, P. S. 2006 A front tracking method for a defomable intravascular bubble in a tube with soluble surfactant transpout. J. Comput. Phys. 214, 366396.CrossRefGoogle Scholar
Zhang, L., Xu, B., Jiang, B. & Liu, Y. 2010 Effect of electric double layer repulsion on oil droplet coalescence process. Chem. Engng Technol. 33, 878884.CrossRefGoogle Scholar
16
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Controlling droplet bouncing and coalescence with surfactant
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Controlling droplet bouncing and coalescence with surfactant
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Controlling droplet bouncing and coalescence with surfactant
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *