Skip to main content Accessibility help
Hostname: page-component-747cfc64b6-dkhcg Total loading time: 0.209 Render date: 2021-06-15T17:43:48.016Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

A closure for Lagrangian velocity gradient evolution in turbulence using recent-deformation mapping of initially Gaussian fields

Published online by Cambridge University Press:  09 September 2016

Perry L. Johnson
Department of Mechanical Engineering and Center for Environmental and Applied Fluid Mechanics, The Johns Hopkins University, Baltimore, MD 21218, USA
Charles Meneveau
Department of Mechanical Engineering and Center for Environmental and Applied Fluid Mechanics, The Johns Hopkins University, Baltimore, MD 21218, USA
E-mail address:


The statistics of the velocity gradient tensor in turbulent flows is of both theoretical and practical importance. The Lagrangian view provides a privileged perspective for studying the dynamics of turbulence in general, and of the velocity gradient tensor in particular. Stochastic models for the Lagrangian evolution of velocity gradients in isotropic turbulence, with closure models for the pressure Hessian and viscous Laplacian, have been shown to reproduce important features such as non-Gaussian probability distributions, skewness and vorticity strain-rate alignments. The recent fluid deformation (RFD) closure introduced the idea of mapping an isotropic Lagrangian pressure Hessian as the upstream initial condition using the fluid deformation tensor. Recent work on a Gaussian fields closure, however, has shown that even Gaussian isotropic velocity fields contain significant anisotropy for the conditional pressure Hessian tensor due to the inherent velocity–pressure couplings, and that assuming an isotropic pressure Hessian as the upstream condition may not be realistic. In this paper, Gaussian isotropic field statistics is used to generate more physical upstream conditions for the recent fluid deformation mapping. In this new framework, known isotropy relations can be satisfied by tuning the free model parameters and the original Gaussian field coefficients can be directly used without direct numerical simulation (DNS)-based re-adjustment. A detailed comparison of results from the new model, referred to as the recent deformation of Gaussian fields (RDGF) closure, with existing models and DNS shows the improvements gained, especially in various single-time statistics of the velocity gradient tensor at moderate Reynolds numbers. Application to arbitrarily high Reynolds numbers remains an open challenge for this type of model, however.

© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below.


Arnèodo, A., Benzi, R., Berg, J., Biferale, L., Bodenschatz, E., Busse, A., Calzavarini, E., Castaing, B., Cencini, M., Chevillard, L. et al. 2008 Universal intermittent properties of particle trajectories in highly turbulent flows. Phys. Rev. Lett. 100 (25), 254504.CrossRefGoogle ScholarPubMed
Arora, D., Behr, M. & Pasquali, M. 2004 A tensor-based measure for estimating blood damage. Artif. Organs 28 (11), 10021015.CrossRefGoogle ScholarPubMed
Ashurst, W. T., Kerstein, A. R., Kerr, R. M. & Gibson, C. H. 1987 Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30 (8), 23432353.CrossRefGoogle Scholar
Bagheri, F., Mitra, D., Perlekar, P. & Brandt, L. 2012 Statistics of polymer extensions in turbulent channel flow. Phys. Rev. E 86 (5), 056314.Google Scholar
Balkovsky, E., Fouxon, A. & Lebedev, V. 2000 Turbulent dynamics of polymer solutions. Phys. Rev. Lett. 84 (20), 47654768.CrossRefGoogle Scholar
Batchelor, G. K. 1951 Pressure fluctuations in isotropic turbulence. Math. Proc. Camb. Phil. Soc. 47 (2), 359374.CrossRefGoogle Scholar
Batchelor, G. K. 1980 Mass transfer from small particles suspended in turbulent fluid. J. Fluid Mech. 98, 609623.CrossRefGoogle Scholar
Behbahani, M., Behr, M., Hormes, M., Steinseifer, U., Arora, D., Coronado, O. & Pasquali, M. 2009 A review of computational fluid dynamics analysis of blood pumps. Eur. J. Appl. Maths 20, 363.CrossRefGoogle Scholar
Bershadskii, A., Kit, E. & Tsinober, A. 1993 On universality of geometrical invariants in turbulence – experimental results. Phys. Fluids A 5 (1993), 1523.CrossRefGoogle Scholar
Betchov, R. 1956 An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech. 1 (05), 497504.CrossRefGoogle Scholar
Biferale, L., Bodenschatz, E., Cencini, M., Lanotte, A. S., Ouellette, N. T., Toschi, F. & Xu, H. 2008 Lagrangian structure functions in turbulence: a quantitative comparison between experiment and direct numerical simulation. Phys. Fluids 20 (6), 065103.CrossRefGoogle Scholar
Biferale, L., Boffetta, G., Celani, A., Devenish, B. J., Lanotte, A. & Toschi, F. 2004 Multifractal statistics of Lagrangian velocity and acceleration in turbulence. Phys. Rev. Lett. 93 (6), 064502.CrossRefGoogle ScholarPubMed
Biferale, L., Meneveau, C. & Verzicco, R. 2014 Deformation statistics of sub-Kolmogorov-scale ellipsoidal neutrally buoyant drops in isotropic turbulence. J. Fluid Mech. 754, 184207.CrossRefGoogle Scholar
Biferale, L., Scagliarini, A. & Toschi, F. 2010 On the measurement of vortex filament lifetime statistics in turbulence. Phys. Fluids 22 (6), 065101.CrossRefGoogle Scholar
Blackburn, H. M., Mansour, N. N. & Cantwell, B. J. 1996 Topology of fine-scale motions in turbulent channel flow. J. Fluid Mech. 310, 269.CrossRefGoogle Scholar
Boffetta, G., De Lillo, F. & Musacchio, S. 2002 Lagrangian statistics and temporal intermittency in a shell model of turbulence. Phys. Rev. E 66 (6), 066307.Google Scholar
Cantwell, B. J. 1992 Exact solution of a restricted Euler equation for the velocity gradient tensor. Phys. Fluids 4 (4), 782793.CrossRefGoogle Scholar
Chen, H., Chen, S. & Kraichnan, R. H. 1989 Probability distribution of a stochastically advected scalar field. Phys. Rev. Lett. 63 (24), 26572660.CrossRefGoogle ScholarPubMed
Chertkov, M. 2000 Polymer stretching by turbulence. Phys. Rev. Lett. 84 (20), 47614764; arXiv:9911011.CrossRefGoogle ScholarPubMed
Chertkov, M., Pumir, A. & Shraiman, B. I. 1999 Lagrangian tetrad dynamics and the phenomenology of turbulence. Phys. Fluids 11 (8), 23942410; arXiv:9905027.CrossRefGoogle Scholar
Chevillard, L. & Meneveau, C. 2006 Lagrangian dynamics and statistical geometric structure of turbulence. Phys. Rev. Lett. 97 (17), 174501.CrossRefGoogle ScholarPubMed
Chevillard, L. & Meneveau, C. 2011 Lagrangian time correlations of vorticity alignments in isotropic turbulence: observations and model predictions. Phys. Fluids 23 (10), 101704.CrossRefGoogle Scholar
Chevillard, L. & Meneveau, C. 2013 Orientation dynamics of small, triaxial-ellipsoidal particles in isotropic turbulence. J. Fluid Mech. 737, 571596; arXiv:1305.6275v1.CrossRefGoogle Scholar
Chevillard, L., Meneveau, C., Biferale, L. & Toschi, F. 2008 Modeling the pressure Hessian and viscous Laplacian in turbulence: comparisons with direct numerical simulation and implications on velocity gradient dynamics. Phys. Fluids 20 (10), 101504.CrossRefGoogle Scholar
Chevillard, L., Roux, S. G., Leveque, E., Mordant, N., Pinton, J. & Arneodo, A. 2003 Lagrangian velocity statistics in turbulent flows: effects of dissipation. Phys. Rev. Lett. 91 (21), 214502.CrossRefGoogle Scholar
Chong, M. S., Soria, J., Perry, a. E., Chacin, J., Cantwell, B. J. & Na, Y. 1998 Turbulence structures of wall-bounded shear flows found using DNS data. J. Fluid Mech. 357, 225247.CrossRefGoogle Scholar
De Tullio, M. D., Nam, J., Pascazio, G., Balaras, E. & Verzicco, R. 2012 Computational prediction of mechanical hemolysis in aortic valved prostheses. Eur. J. Mech. (B/Fluids) 35, 4753.CrossRefGoogle Scholar
Donzis, D. A., Yeung, P. K. & Sreenivasan, K. R. 2008 Dissipation and enstrophy in isotropic turbulence: resolution effects and scaling in direct numerical simulations. Phys. Fluids 20 (4), 045108.CrossRefGoogle Scholar
Falkovich, G., Gawedski, K. & Vergassola, M. 2001 Particles and fields in fluid turbulence. Rev. Mod. Phys. 73 (October), 913975.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.Google Scholar
Girimaji, S. S. & Pope, S. B. 1990 Material-element deformation in isotropic turbulence. J. Fluid Mech. 220, 427458.CrossRefGoogle Scholar
Green, M. A., Rowley, C. W. & Haller, G. 2007 Detection of Lagrangian coherent structures in three-dimensional turbulence. J. Fluid Mech. 572, 111120.CrossRefGoogle Scholar
Haller, G. 2000 Finding finite-time invariant manifolds in two-dimensional velocity fields. Chaos 10 (1), 99108.CrossRefGoogle Scholar
Haller, G. 2015 Langrangian coherent structures. Annu. Rev. Fluid Mech. 47 (1), 137162.CrossRefGoogle Scholar
Haller, G. & Yuan, G. 2000 Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D 147 (3–4), 352370.Google Scholar
Jeong, E. & Girimaji, S. S. 2003 Velocity-gradient dynamics in turbulence: effect of viscosity and forcing. Theor. Comput. Fluid Dyn. 16 (6), 421432.CrossRefGoogle Scholar
Karp-Boss, L., Boss, E. & Jumars, P. A. 1996 Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion. Oceanogr. Mar. Biol. 34, 71107.Google Scholar
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 299303.Google Scholar
Kolmogorov, A. N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13 (01), 8285.CrossRefGoogle Scholar
Kraichnan, R. H. 1990 Models of intermittency in hydrodynamic turbulence. Phys. Rev. Lett. 65 (5), 575578.CrossRefGoogle ScholarPubMed
Lawson, J. & Dawson, J. 2015 On velocity gradient dynamics and turbulent structure. J. Fluid Mech. 780, 6098.CrossRefGoogle Scholar
Li, Y., Perlman, E., Wan, M., Yang, Y., Meneveau, C., Burns, R., Chen, S., Szalay, A. & Eyink, G. 2008 A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. J. Turbul. 9 (31), 129.Google Scholar
Lund, T. S. & Rogers, M. M. 1994 An improved measure of strain state probability in turbulent flows. Phys. Fluids 6 (5), 18381847.CrossRefGoogle Scholar
Lüthi, B., Holzner, M. & Tsinober, A. 2009 Expanding the Q? R space to three dimensions. J. Fluid Mech. 641, 497507.CrossRefGoogle Scholar
Maniero, R., Masbernat, O., Climent, E. & Risso, F. 2012 Modeling and simulation of inertial drop break-up in a turbulent pipe flow downstream of a restriction. Intl J. Multiphase Flow 42, 18.CrossRefGoogle Scholar
Martin, J., Dopazo, C. & Valino, L. 1998a Dynamics of velocity gradient invariants in turbulence: restricted Euler and linear diffusion models. Phys. Fluids 10 (8), 20122025.CrossRefGoogle Scholar
Martin, J., Ooi, A., Chong, M. S. & Soria, J. 1998b Dynamics of the velocity gradient tensor invariants in isotropic turbulence. Phys. Fluids 10, 2336.CrossRefGoogle Scholar
Martins-Afonso, M. & Meneveau, C. 2010 Recent fluid deformation closure for velocity gradient tensor dynamics in turbulence: timescale effects and expansions. Physica D 239 (14), 12411250.CrossRefGoogle Scholar
Meneveau, C. 2011 Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annu. Rev. Fluid Mech. 43, 219245.CrossRefGoogle Scholar
Meneveau, C. & Lund, T. S. 1994 On the Lagrangian nature of the turbulence energy cascade. Phys. Fluids 6 (8), 2820.CrossRefGoogle Scholar
Meneveau, C. & Sreenivasan, K. R. 1991 The multifractal nature of turbulent energy dissipation. J. Fluid Mech. 224, 429484.CrossRefGoogle Scholar
Moriconi, L., Pereira, R. M. & Grigorio, L. S. 2014 Velocity-gradient probability distribution functions in a Lagrangian model of turbulence. J. Stat. Mech. 2014, P10015 arXiv:1401.0678v1.CrossRefGoogle Scholar
Nomura, K. K. & Post, G. K. 1998 The structure and dynamics of vorticity and rate of strain in incompressible homogeneous turbulence. J. Fluid Mech. 377, 6597.CrossRefGoogle Scholar
Oboukhov, A. M. 1962 Some specific features of atmospheric tubulence. J. Fluid Mech. 13 (01), 7781.CrossRefGoogle Scholar
Ohkitani, K. & Kishiba, S. 1995 Nonlocal nature of vortex stretching in an inviscid fluid. Phys. Fluids 7 (2), 411.CrossRefGoogle Scholar
Ooi, A., Martin, J., Soria, J. & Chong, M. S. 1999 A study of the evolution and characteristics of the invariants of the velocity-gradient tensor in isotropic turbulence. J. Fluid Mech. 381, 141174.CrossRefGoogle Scholar
Ottino, J. M. 1989 The Kinematics of Mixing, Stretching, Chaos, and Transport. Cambridge University Press.Google Scholar
Parisi, G. & Frisch, U. 1985 On the singularity structure of fully developed turbulence. In Turbulence and Predictability in Geophysical Fluid Dynamics (ed. Ghil, M., Benzi, R. & Parisi, G.), North-Holland.Google Scholar
Parsa, S., Calzavarini, E., Toschi, F. & Voth, G. a. 2012 Rotation rate of rods in turbulent fluid flow. Phys. Rev. Lett. 109 (September), 14; arXiv:1205.0219v1.CrossRefGoogle ScholarPubMed
Pedley, T. J. & Kessler, J. 1992 Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24, 313358.CrossRefGoogle Scholar
Perlman, E., Burns, R., Li, Y. & Meneveau, C. 2007 Data exploration of turbulence simulations using a database cluster. In Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC ’07), ACM.Google Scholar
Pope, S. B. 1991 Mapping closures for turbulent mixing and reaction. Theor. Comput. Fluid Dyn. 2, 255270.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. 1992 Numerical Recipes in Fortran 77, 2nd edn. Cambridge University Press.Google Scholar
Pumir, A., Bodenschatz, E. & Xu, H. 2013 Tetrahedron deformation and alignment of perceived vorticity and strain in a turbulent flow. Phys. Fluids 25, 035101.CrossRefGoogle Scholar
Rosales, C. & Meneveau, C. 2008 Anomalous scaling and intermittency in three-dimensional synthetic turbulence. Phys. Rev. E 78, 118.CrossRefGoogle Scholar
Soria, J., Sondergaard, R., Cantwell, B. J., Chong, M. S. & Perry, a. E. 1994 A study of the fine-scale motions of incompressible time-developing mixing layers. Phys. Fluids 6 (1994), 871.CrossRefGoogle Scholar
Sreenivasan, K. R. & Antonia, R. A. 1997 The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29 (1), 435472.CrossRefGoogle Scholar
Suman, S. & Girimaji, S. S. 2009 Homogenized Euler equation: a model for compressible velocity gradient dynamics. J. Fluid Mech. 620, 177.CrossRefGoogle Scholar
Suman, S. & Girimaji, S. S. 2011 Dynamical model for velocity-gradient evolution in compressible turbulence. J. Fluid Mech. 683, 289319.CrossRefGoogle Scholar
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41 (1), 375404.CrossRefGoogle Scholar
Vieillefosse, P. 1982 Local interaction between vorticity and shear in a perfect incompressible fluid. J. Phys. (Paris) 43, 837842.CrossRefGoogle Scholar
Vieillefosse, P. 1984 Internal motion of a small element of fluid in an inviscid flow. Physica A 125, 150162.CrossRefGoogle Scholar
Wallace, J. M. 2009 Twenty years of experimental and direct numerical simulation access to the velocity gradient tensor: what have we learned about turbulence? Phys. Fluids 21 (2), 021301.CrossRefGoogle Scholar
Wilczek, M. & Meneveau, C. 2014 Pressure Hessian and viscous contributions to velocity gradient statistics based on Gaussian random fields. J. Fluid Mech. 756, 191225.CrossRefGoogle Scholar
Yu, H. & Meneveau, C. 2010 Lagrangian refined Kolmogorov similarity hypothesis for gradient time evolution and correlation in turbulent flows. Phys. Rev. Lett. 104 (8), 084502.CrossRefGoogle Scholar
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A closure for Lagrangian velocity gradient evolution in turbulence using recent-deformation mapping of initially Gaussian fields
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A closure for Lagrangian velocity gradient evolution in turbulence using recent-deformation mapping of initially Gaussian fields
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A closure for Lagrangian velocity gradient evolution in turbulence using recent-deformation mapping of initially Gaussian fields
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *