Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-m9wwp Total loading time: 0.444 Render date: 2021-07-27T19:42:28.076Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Boundary-layer separation control on a thin airfoil using local suction

Published online by Cambridge University Press:  05 July 2005

H. ATIK
Affiliation:
The Scientific & Technical Research Council, Defense Industries Research & Development Institute, P.K.16 Mamak, Ankara, Turkey 06261
C.-Y. KIM
Affiliation:
Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, PA 18015, USA
L. L. VAN DOMMELEN
Affiliation:
Department of Mechanical Engineering, Florida A&M and Florida State Universities, Tallahassee, FL 32310, USA
J. D. A. WALKER
Affiliation:
Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, PA 18015, USA

Abstract

High-speed incompressible flow past a thin airfoil in a uniform stream is considered. When the angle of attack for a solid airfoil exceeds a certain critical value, the boundary layer in the leading-edge region separates in a process known to lead to dynamic stall. Here suction near the leading edge is studied as a means of controlling separation and thereby inhibiting dynamic stall. First, steady boundary-layer solutions are obtained to determine the nature of suction distributions required to suppress separation on an airfoil at an angle of attack beyond the critical value (for a solid wall). Unsteady boundary-layer solutions are then obtained, using a combination of Eulerian and Lagrangian techniques, for an airfoil at an angle of attack exceeding the critical value; the effects of various parameters associated with the finite-length suction slot, its location and the suction strength are considered. Major modifications of the Lagrangian numerical method are required to account for suction at the wall. It is determined that substantial delays in separation can be achieved even when the suction is weak, provided that the suction is initiated at an early stage.

Type
Papers
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
23
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Boundary-layer separation control on a thin airfoil using local suction
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Boundary-layer separation control on a thin airfoil using local suction
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Boundary-layer separation control on a thin airfoil using local suction
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *