Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-01T21:03:00.520Z Has data issue: false hasContentIssue false

Actively flapping tandem flexible flags in a viscous flow

Published online by Cambridge University Press:  02 September 2015

Emad Uddin
Affiliation:
Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
Wei-Xi Huang*
Affiliation:
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
Hyung Jin Sung*
Affiliation:
Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
*
Email address for correspondence: hjsung@kaist.ac.kr
Email address for correspondence: hjsung@kaist.ac.kr

Abstract

The active flapping motions of fish and cetaceans generate both propulsive and manoeuvring forces. The tail fin motions of the majority of fish can essentially be viewed as a combined pitch-and-heave motion. Downstream bodies are strongly influenced by the vortices shed from an upstream body. To investigate the interactions between flexible bodies and vortices, the present study examined tandem flexible flags in a viscous flow by using an improved version of the immersed boundary method. The upstream flag underwent passive flapping in a uniform flow while the downstream flag flapped according to a prescribed pitching and heaving motion of the leading edge. The influences of the active flapping motion on the system dynamics were examined in detail, including the frequency, the phase angle, the bending coefficient and the amplitudes of the pitching and heaving motion. The variation of the drag coefficient of the downstream flag was explored together with the instantaneous vorticity contours and the body shapes. Both the slalom mode and the interception mode were identified according to the vortex–flexible body interactions, corresponding to the low- and high-drag situations, respectively. The underlying mechanism was discussed and compared with previous studies.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Department of Mechanical Engineering, SMME, NUST H-12, Islamabad 46000, Pakistan.

References

Alben, S. 2009 Wake-mediated synchronization and drafting in coupled flags. J. Fluid Mech. 641, 489496.Google Scholar
Alben, S. 2011 Flapping propulsion using a fin ray. J. Fluid Mech. 705, 149164.Google Scholar
Alben, S., Madden, P. G. & Lauder, G. V. 2007 The mechanics of active fin-shape control in ray-finned fishes. J. R. Soc. Interface 4 (12), 243256.Google Scholar
Alben, S., Witt, C., Baker, T. V., Anderson, E. & Lauder, G. V. 2012 Dynamics of freely swimming flexible foils. Phys. Fluids 24, 051901.Google Scholar
Akhtar, I., Mittal, R., Lauder, G. V. & Drucker, E. 2007 Hydrodynamics of a biologically inspired tandem flapping foil configuration. Theor. Comput. Fluid Dyn. 21, 155170.Google Scholar
Anderson, J. M., Streitlien, K., Barrett, D. S. & Triantafyllou, M. S. 1998 Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 4172.Google Scholar
Beal, D. N., Hover, F. S., Triantafyllou, M. S., Liao, J. C. & Lauder, G. V. 2006 Passive propulsion in vortex wakes. J. Fluid Mech. 549, 385402.Google Scholar
Deng, H.-B., Xu, Y.-Q., Chen, D.-D., Dai, H., Wu, J. & Tian, F.-B. 2013 On numerical modeling of animal swimming and flight. Comput. Mech. 52, 12211242.Google Scholar
Eloy, C. & Lauga, E. 2012 Kinematics of the most efficient cilium. Phys. Rev. Lett. 109, 038101.CrossRefGoogle ScholarPubMed
Fish, F. E. & Lauder, G. V. 2006 Passive and active flow control by swimming fishes and mammals. Annu. Rev. Fluid Mech. 38, 193224.Google Scholar
Gopalkrishnan, R., Triantafyllou, M. S., Triantafyllou, G. S. & Barrett, D. 1994 Active vorticity control in a shear flow using a flapping foil. J. Fluid Mech. 274, 121.Google Scholar
Guglielmini, L. & Blondeaux, P. 2004 Propulsive efficiency of oscillating foils. Eur. J. Mech. (B/Fluids) 23, 255278.CrossRefGoogle Scholar
Huang, W.-X., Shin, S. J. & Sung, H. J. 2007 Simulation of flexible filaments in a uniform flow by the immersed boundary method. J. Comput. Phys. 226, 22062228.Google Scholar
Huang, W.-X. & Sung, H. J. 2009 An immersed boundary method for fluid-flexible structure interaction. Comput. Meth. Appl. Mech. Engng 198, 26502661.CrossRefGoogle Scholar
Jia, L. B. & Yin, X. Y. 2008 Passive oscillations of two tandem flexible filaments in a flowing soap film. Phys. Rev. Lett. 100, 228104.Google Scholar
Kang, C. K., Aono, H., Cesnik, C. E. S. & Shyly, W. 2011 Effects of flexibility on the aerodynamic performance of flapping wings. J. Fluid Mech. 689, 3274.Google Scholar
Kim, K., Baek, S.-J. & Sung, H. J. 2002 An implicit velocity decoupling procedure for the incompressible Navier–Stokes equations. Intl J. Numer. Meth. Fluids 38, 125138.Google Scholar
Kim, S., Huang, W.-X. & Sung, H. J. 2010 Constructive and destructive interaction modes between two tandem flexible flags in viscous flow. J. Fluid Mech. 661, 511521.Google Scholar
Lauder, G. V., Anderson, E. J., Tangorra, J. & Madden, P. G. 2007 Fish biorobotics: kinematics and hydrodynamics of self-propulsion. J. Expl Biol. 210, 27672780.Google Scholar
Liao, J. C., Beal, D. N., Lauder, G. V. & Triantafyllou, M. S. 2003 Fish exploiting vortices decrease muscle activity. Science 302, 15661569.CrossRefGoogle ScholarPubMed
Lighthill, M. J. 1970 Aquatic animal propulsion of high hydromechanical efficiency. J. Fluid Mech. 44, 265301.Google Scholar
Marais, C., Thiria, B., Wesfreid, J. E. & Godoy-diana, R. 2012 Stabilizing effect of flexibility in the wake of a flapping foil. J. Fluid Mech. 710, 659669.Google Scholar
Masoud, H. & Alexeev, A. 2010 Resonance of flexible flapping wings at low Reynolds number. Phys. Rev. E 81, 056304.Google Scholar
Michelin, S. & Smith, S. G. L. 2009 Resonance and propulsion performance of a heaving flexible wing. Phys. Fluids 21, 071902.Google Scholar
Ramananarivo, S., Godoy-diana, R. & Thiria, B. 2011 Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance. Proc. Natl Acad. Sci. USA 108, 59645969.CrossRefGoogle ScholarPubMed
Ristroph, L. & Zhang, J. 2008 Anomalous hydrodynamic drafting of interacting flapping flags. Phys. Rev. Lett. 101, 194502.CrossRefGoogle ScholarPubMed
Shelley, M. J. & Zhang, J. 2011 Flapping and bending bodies interacting with fluid flows. Annu. Rev. Fluid Mech. 43, 449465.Google Scholar
Shin, S. J., Huang, W.-X. & Sung, H. J. 2008 Assessment of regularized delta functions and feedback forcing schemes for an immersed boundary method. Intl J. Numer. Meth. Fluids 58, 263286.Google Scholar
Shoele, K. & Zhu, Q. 2012 Leading edge strengthening and the propulsion performance of flexible ray fins. J. Fluid Mech. 693, 402432.Google Scholar
Shyy, W., Aono, H., Chimakurthi, S. K., Trizila, P., Kang, C.-K., Cesnik, C. E. S. & Liu, H. 2010 Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 46, 284327.Google Scholar
Spagnolie, S. E., Moret, L., Shelley, M. J. & Zhang, J. 2010 Surprising behaviors in flapping locomotion with passive pitching. Phys. Fluids 22, 041903.Google Scholar
Thiria, B. & Godoy-diana, R. 2010 How wing compliance drives the efficiency of self-propelled flapping flyers. Phys. Rev. E 82, 015303(R).Google Scholar
Tuncer, I. H. & Kaya, M. 2005 Optimization of flapping airfoils for maximum thrust and propulsive efficiency. AIAA J. 43 (11), 23292336.CrossRefGoogle Scholar
Uddin, E., Huang, W.-X. & Sung, H. J. 2013 Interaction modes of multiple flexible flags in a uniform flow. J. Fluid Mech. 729, 563583.Google Scholar
Wang, Z. J. 2005 Dissecting insect flight. Annu. Rev. Fluid Mech. 37, 183210.CrossRefGoogle Scholar
Williamson, C. H. K. & Govardhan, R. 2004 Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36, 413455.Google Scholar
Wu, T. Y. 2011 Fish swimming and bird/insect flight. Annu. Rev. Fluid Mech. 43, 2558.Google Scholar
Zhang, J., Childress, S., Libchaber, A. & Shelley, M. 2000 Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind. Nature 408, 835839.Google Scholar
Zhu, L. 2009 Interaction of two tandem deformable bodies in a viscous incompressible flow. J. Fluid Mech. 635, 455475.Google Scholar
Zhu, X., He, G. & Zhang, X. 2014a Numerical study on hydrodynamic effect of flexibility in a self-propelled plunging foil. Comput. Fluids 97, 120.CrossRefGoogle Scholar
Zhu, X., He, G. & Zhang, X. 2014b How flexibility affects the wake symmetry properties of a self-propelled plunging foil. J. Fluid Mech. 751, 164183.Google Scholar
Zhu, X., He, G. & Zhang, X. 2014c Flow-mediated interactions between two self-propelled flapping filaments in tandem configuration. Phys. Rev. Lett. 113, 238105.Google Scholar

Uddin et al. supplementary movie

Fig15(a)

Download Uddin et al. supplementary movie(Video)
Video 2.2 MB

Uddin et al. supplementary movie

Fig15(b)

Download Uddin et al. supplementary movie(Video)
Video 2.2 MB

Uddin et al. supplementary movie

Fig15(c)

Download Uddin et al. supplementary movie(Video)
Video 2.2 MB

Uddin et al. supplementary movie

Fig15(d)

Download Uddin et al. supplementary movie(Video)
Video 2.6 MB

Uddin et al. supplementary movie

Fig8(a)

Download Uddin et al. supplementary movie(Video)
Video 991.1 KB

Uddin et al. supplementary movie

Fig8 (b)

Download Uddin et al. supplementary movie(Video)
Video 3.2 MB

Uddin et al. supplementary movie

Fig8(c)

Download Uddin et al. supplementary movie(Video)
Video 2.3 MB

Uddin et al. supplementary movie

Fig8(d)

Download Uddin et al. supplementary movie(Video)
Video 3 MB