Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-25T05:56:32.170Z Has data issue: false hasContentIssue false

The impact a Mediterranean Diet in the third trimester of pregnancy has on neonatal body fat percentage

Published online by Cambridge University Press:  18 October 2021

D. Ashwin*
Affiliation:
Oceania University of Medicine, Apia, Samoa Telethon Kids Institute, Perth, Western Australia, Australia
L. Gibson
Affiliation:
Telethon Kids Institute, Perth, Western Australia, Australia
E. Hagemann
Affiliation:
Telethon Kids Institute, Perth, Western Australia, Australia
N. D’Vaz
Affiliation:
Telethon Kids Institute, Perth, Western Australia, Australia
N. Bear
Affiliation:
Institute for Health Research, Notre Dame University, Perth, Western Australia, Australia
D. Silva
Affiliation:
Telethon Kids Institute, Perth, Western Australia, Australia University of Western Australia, Perth, Western Australia, Australia Joondalup Health Campus, Perth, Western Australia, Australia Edith Cowan University, Perth, Western Australia, Australia
*
Address for correspondence: Danella Ashwin, Oceania University of Medicine, Apia, Samoa. Email: danella.ashwin@outlook.com

Abstract

Maternal diet during pregnancy has long been recognised as an important determinant of neonatal outcomes and child development. Infant body composition is a potentially modifiable risk factor for predicting future health and metabolic disease. Utilising the Mediterranean Diet Score, this study focused on how different levels of Mediterranean Diet adherence (MDA) in pregnancy influence body fat percentage of the infant. Information on 458 pregnant women in their third trimester of pregnancy and their infants was obtained from The ORIGINS Project. The data included MDA score, body composition measurements using infant air displacement plethysmography (PEA POD), pregnancy, and birth information. Infants born to mothers with high MDA had a body fat percentage of 11.3%, whereas infants born to mothers with low MDA had a higher body fat percentage of 13.3% (p = 0.010). When adjusted for pre-pregnancy body mass index and infant sex, a significant result remained between high vs. low MDA and infant fat mass (FM) (2.5% less FM p = 0.016). This study suggests that high MDA in pregnancy was associated with a reduced body fat percentage in the newborn. Future studies are needed to understand whether small but significant changes in FM persist throughout childhood.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press in association with International Society for Developmental Origins of Health and Disease

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

International Food Information Council Foundation, (AAPA) AA of PA. Healthy Eating During Pregnancy. Food insight.Google Scholar
Reijnders, IF, Mulders, AGMGJ, Van Der Windt, M, Steegers, EAP, Steegers-Theunissen, RDSPM. The impact of periconceptional maternal lifestyle on clinical features and biomarkers of placental development and function: a systematic review. Hum Reprod Update. 2019; 25(1), 7294. DOI 10.1093/humupd/dmy037.CrossRefGoogle ScholarPubMed
Kind, KL, Moore, VM, Davies, MJ. Diet around conception and during pregnancy - effects on fetal and neonatal outcomes. Reprod Biomed Online. 2006; 12(5), 532541. DOI 10.1016/S1472-6483(10)61178-9.CrossRefGoogle ScholarPubMed
Saunders, L, Guldner, L, Costet, N, et al. Effect of a mediterranean diet during pregnancy on fetal growth and preterm delivery: results from a French caribbean mother-child cohort study (TIMOUN). Paediatr Perinat Epidemiol. 2014; 28(3), 235244. DOI 10.1111/ppe.12113.CrossRefGoogle Scholar
Zerfu, TA, Pinto, E, Baye, K. Consumption of dairy, fruits and dark green leafy vegetables is associated with lower risk of adverse pregnancy outcomes (APO): a prospective cohort study in rural Ethiopia. Nutr Diabetes. 2018; 8(1), 2275. DOI 10.1038/s41387-018-0060-y.CrossRefGoogle ScholarPubMed
National Health and Medical Research Council.Australian Dietary Guidelines. Canberra, 2013. 10.1097/NT.0b013e31826c50af.Google Scholar
Venter, C, Brown, KR, Maslin, K, Palmer, DJ. Maternal dietary intake in pregnancy and lactation and allergic disease outcomes in offspring. Pediatr Allergy Immunol. 2017; 28(2), 135143. DOI 10.1111/pai.12682.CrossRefGoogle ScholarPubMed
Nurmatov, U, Devereux, G, Sheikh, A. Nutrients and foods for the primary prevention of asthma and allergy: systematic review and meta-analysis. J Allergy Clin Immunol. 2011; 127(3), 724733.e30. DOI 10.1016/j.jaci.2010.11.001.CrossRefGoogle ScholarPubMed
Sewell, DA, Hammersley, VS, Devereux, G, et al. Investigating the effectiveness of the Mediterranean diet in pregnant women for the primary prevention of asthma and allergy in high-risk infants: protocol for a pilot randomised controlled trial. Trials. 2013; 14(1), 173. DOI 10.1186/1745-6215-14-173.CrossRefGoogle ScholarPubMed
Seyedrezazadeh, E, Pour Moghaddam, M, Ansarin, K, Reza Vafa, M, Sharma, S, Kolahdooz, F. Fruit and vegetable intake and risk of wheezing and asthma: a systematic review and meta-analysis. Nutr Rev. 2014; 72(7), 411428. DOI 10.1111/nure.12121.CrossRefGoogle ScholarPubMed
Moody, L, Chen, H, Pan, Y-X. Early-life nutritional programming of cognition—The fundamental role of epigenetic mechanisms in mediating the relation between early-life environment and learning and memory process. Adv Nutr Int Rev J. 2017; 8(2), 337350. DOI 10.3945/an.116.014209.CrossRefGoogle ScholarPubMed
Del Chierico, F, Vernocchi, P, Dallapiccola, B, Putignani, L. Mediterranean diet and health: food effects on gut microbiota and disease control. Int J Mol Sci. 2014; 15(7), 1167811699. DOI 10.3390/ijms150711678.CrossRefGoogle ScholarPubMed
Martínez-Galiano, JM, Olmedo-Requena, R, Barrios-Rodríguez, R, et al. Effect of adherence to a mediterranean diet and olive oil intake during pregnancy on risk of small for gestational age infants. Nutrients. 2018; 10(9), 1234. DOI 10.3390/nu10091234.CrossRefGoogle ScholarPubMed
Fernández-Barrés, S, Romaguera, D, Valvi, D, et al. Mediterranean dietary pattern in pregnant women and offspring risk of overweight and abdominal obesity in early childhood: the INMA birth cohort study. Pediatr Obes. 2016; 11(6), 491499. DOI 10.1111/ijpo.12092.CrossRefGoogle ScholarPubMed
Assaf-Balut, C, García De La Torre, N, Durán, A, et al. A Mediterranean diet with additional extra virgin olive oil and pistachios reduces the incidence of gestational diabetes mellitus (GDM): a randomized controlled trial: the St. Carlos GDM prevention study. PLoS One. 2017; 12(10), e0185873. DOI 10.1371/journal.pone.0185873.CrossRefGoogle ScholarPubMed
Izadi, V, Tehrani, H, Haghighatdoost, F, Dehghan, A, Surkan, PJ, Azadbakht, L. Adherence to the DASH and Mediterranean diets is associated with decreased risk for gestational diabetes mellitus. Nutrition. 2016; 32(10), 10921096. DOI 10.1016/j.nut.2016.03.006.CrossRefGoogle Scholar
Olmedo-Requena, R, Gómez-Fernández, J, Amezcua-Prieto, C, Mozas-Moreno, J, Khan, KS, Jiménez-Moleón, JJ. Pre-pregnancy adherence to the mediterranean diet and gestational diabetes mellitus: a case-control study. Nutrients. 2019; 11(5), 1003. DOI 10.3390/nu11051003.CrossRefGoogle Scholar
Estruch, R, Martínez-González, MA, Corella, D, et al. Effects of a Mediterranean-style diet on cardiovascular risk factors a randomized trial. Ann Intern Med. 2006; 145(1), 1. DOI 10.7326/0003-4819-145-1-200607040-00004.CrossRefGoogle ScholarPubMed
Jacobs, DR, Gross, MD, Tapsell, LC. Food synergy: an operational concept for understanding nutrition. Am J Clin Nutr. 2009; 89(5), 1543S1548S. DOI 10.3945/ajcn.2009.26736B.CrossRefGoogle ScholarPubMed
Salas-Salvadó, Jordi, bullo, MBN. Reduction in the incidence of type 2 diabetes with the Mediterranean diet. Diabetes Care. 2011; 34(1), 1419. DOI 10.2337/dc10-1288.CrossRefGoogle ScholarPubMed
Widmer, RJ, Flammer, AJ, Lerman, LO, Lerman, A. The Mediterranean diet, its components, and cardiovascular disease. Am J Med. 2015; 128(3), 229238. DOI 10.1016/j.amjmed.2014.10.014.CrossRefGoogle ScholarPubMed
Parker, HW, Tovar, A, McCurdy, K, Vadiveloo, M. Associations between pre-pregnancy BMI, gestational weight gain, and prenatal diet quality in a national sample. PLoS One. 2019; 14(10), e0224034. DOI 10.1371/journal.pone.0224034.CrossRefGoogle Scholar
Wiechers, C, Kirchhof, S, Balles, L, et al. Neonatal body composition: crossectional study in healthy term singletons in Germany. BMC Pediatr. 2019; 19(1), 2292. DOI 10.1186/s12887-019-1837-4.Google ScholarPubMed
Catalano, PM, Thomas, A, Huston-Presley, L, Amini, SB. Increased fetal adiposity: a very sensitive marker of abnormal in utero development. Am J Obstet Gynecol. 2003; 189(6), 16981704. DOI 10.1016/S0002-9378(03)00828-7.CrossRefGoogle ScholarPubMed
Sewell, MF, Huston-Presley, L, Super, DM, Catalano, P. Increased neonatal fat mass, not lean body mass, is associated with maternal obesity. Am J Obstet Gynecol. 2006; 195(4), 11001103. DOI 10.1016/j.ajog.2006.06.014.CrossRefGoogle Scholar
Aris, IM, Bernard, JY, Chen, LW, et al. Infant body mass index peak and early childhood cardio-metabolic risk markers in a multi-ethnic Asian birth cohort. Int J Epidemiol. 2017; 46(2), 513525. DOI 10.1093/ije/dyw232.Google Scholar
Baker, JL, Olsen, LW, Sørensen, TIA. Childhood body-mass index and the risk of coronary heart disease in adulthood. N Engl J Med. 2007; 357(23), 23292337. DOI 10.1056/NEJMoa072515.CrossRefGoogle ScholarPubMed
Bao, W, Threefoot, SA, Srinivasan, SR, Berenson, GS. Essential hypertension predicted by tracking of elevated blood pressure from childhood to adulthood: the Bogalusa heart study. Am J Hypertens. 1995; 8(7), 657665. DOI 10.1016/0895-7061(95)00116-7.CrossRefGoogle ScholarPubMed
Wiechers, C, Kirchhof, S, Maas, C, Poets, CF, Franz, AR. Neonatal body composition by air displacement plethysmography in healthy term singletons: a systematic review. BMC Pediatr. 2019; 19(1), 427. DOI 10.1186/s12887-019-1867-y.Google ScholarPubMed
Guenther, PM, Casavale, KO, Reedy, J, et al. Update of the Healthy Eating Index: HEI-2010. J Acad Nutr Diet. 2013; 113(4), 569580. DOI 10.1016/j.jand.2012.12.016.CrossRefGoogle ScholarPubMed
Patterson, RE, Haines, PS, Popkin, BM. Diet quality index: capturing a multidimensional behavior. J Am Diet Assoc. 1994; 94(1), 5764. DOI 10.1016/0002-8223(94)92042-7.CrossRefGoogle ScholarPubMed
Huijbregts, P, Feskens, E, Räsänen, L, et al. Dietary pattern and 20 year mortality in elderly men in Finland, Italy, and the Netherlands: longitudinal cohort study. Br Med J. 1997; 315(7099), 1317. DOI 10.1136/bmj.315.7099.13.CrossRefGoogle ScholarPubMed
Trichopoulou, A, Kouris-Blazos, A, Wahlqvist, ML, et al. Diet and overall survival in elderly people. BMJ. 1995; 311(7018), 14571460. DOI 10.1136/bmj.311.7018.1457.CrossRefGoogle ScholarPubMed
Waijers, PMCM, Feskens, EJM, Ocké, MC. A critical review of predefined diet quality scores. Br J Nutr. 2007; 97(2), 219231. DOI 10.1017/S0007114507250421.CrossRefGoogle ScholarPubMed
Bach, A, Serra-Majem, L, Carrasco, JL, et al. The use of indexes evaluating the adherence to the Mediterranean diet in epidemiological studies: a review. Public Health Nutr. 2006; 9(1A), 132146. DOI 10.1079/phn2005936.CrossRefGoogle Scholar
Trichopoulou, A, Lagiou, P, Kuper, H, Trichopoulos, D. Cancer and Mediterranean dietary traditions. Cancer Epidemiol Biomarkers Prev. 2000; 9(9), 869873.Google ScholarPubMed
Tomaino, L, Suárez, DR, Domínguez, AR, Cruz, LG, Díaz, MR, Majem, LS. Adherence to mediterranean diet is not associated with birthweight – results form a sample of canarian pregnant women. Nutr Hosp. 2020; 37(1), 8692. DOI 10.20960/nh.02780.Google ScholarPubMed
Silva, DT, Hagemann, E, Davis, JA, et al. Introducing the ORIGINS project: a community-based interventional birth cohort. Rev Environ Health. 2020; 35(3), 281293. DOI 10.1515/reveh-2020-0057.CrossRefGoogle ScholarPubMed
Hagemann, E, Colvin, L, Silva, D, Prescott, S. The ORIGINS project. In: Current Topics in Environmental Health and Preventive Medicine, 2019. Springer, Singapore, 10.1007/978-981-13-2194-8,Google Scholar
Australian Bureau of Statistics. 2033.0.55.001. Census of Population and Housing: Socio-Economic Indexes for Areas (SEIFA), Australia. 2016. SEIFA 2016 Technical Paper.Google Scholar
Costacou, T, Bamia, C, Ferrari, P, Riboli, E, Trichopoulos, D, Trichopoulou, A. Tracing the Mediterranean diet through principal components and cluster analyses in the Greek population. Eur J Clin Nutr. 2003; 57(11), 13781385. DOI 10.1038/sj.ejcn.1601699.CrossRefGoogle ScholarPubMed
O’Leary, CM. Fetal alcohol syndrome: diagnosis, epidemiology, and developmental outcomes. J Paediatr Child Health. 2004; 40(1–2), 27. DOI 10.1111/j.1440-1754.2004.00280.x.CrossRefGoogle ScholarPubMed
Martínez-González, MA, García-Arellano, A, Toledo, E, et al. A 14-item mediterranean diet assessment tool and obesity indexes among high-risk subjects: the PREDIMED trial. PLoS One. 2012; 7(8), e43134. DOI 10.1371/journal.pone.0043134.CrossRefGoogle ScholarPubMed
Ellis, KJ, Yao, M, Shypailo, RJ, Urlando, A, Wong, WW, Heird, WC. Body-composition assessment in infancy: air-displacement plethysmography compared with a reference 4-compartment model. Am J Clin Nutr. 2007; 85(1), 9095. DOI 10.1093/ajcn/85.1.90.CrossRefGoogle ScholarPubMed
Fomon, SJ, Haschke, F, Ziegler, EE, Nelson, SE. Body composition of reference children from birth to age 10 years. Am J Clin Nutr. 1982; 35(5), 11691175. DOI 10.1093/ajcn/35.5.1169.CrossRefGoogle ScholarPubMed
Villar, J, Puglia, FA, Fenton, TR, et al. Body composition at birth and its relationship with neonatal anthropometric ratios: the newborn body composition study of the INTERGROWTH-21 st project. Pediatr Res. 2017; 82(2), 305316. DOI 10.1038/pr.2017.52.CrossRefGoogle Scholar
Forsen, T, Eriksson, J, Tuomilehto, J, Reunanen, A, Osmond, C, Barker, D. The fetal and childhood growth of persons who develop type 2 diabetes. Ann Intern Med. 2000; 133(3), 176. DOI 10.7326/0003-4819-133-3-200008010-00008.CrossRefGoogle ScholarPubMed
Ibáñez, L, Ong, K, Dunger, DB, De Zegher, F. Early development of adiposity and insulin resistance after catch-up weight gain in small-for-gestational-age children. J Clin Endocrinol Metab. 2006; 91(6), 21532158. DOI 10.1210/jc.2005-2778.CrossRefGoogle ScholarPubMed
Wells, JCK. Body composition in infants: evidence for developmental programming and techniques for measurement. Rev Endocr Metab Disord. 2012; 13(2), 93101. DOI 10.1007/s11154-012-9213-9.CrossRefGoogle ScholarPubMed
Yajnik, CS, Fall, CHD, Coyaji, KJ, et al. Neonatal anthropometry: the thin-fat Indian baby. the Pune maternal nutrition study. Int J Obes. 2003; 27(2), 173180. DOI 10.1038/sj.ijo.802219.CrossRefGoogle ScholarPubMed
Ziegler, EE, O’Donnell, AM, Nelson, SE, Fomon, SJ. Body composition of the reference fetus. Growth. 1976; 40(4), 329341.Google ScholarPubMed
Butte, NF, Wong, WW, Hopkinson, JM, Heinz, CJ, Mehta, NR, Smith, EO. Energy requirements derived from total energy expenditure and energy deposition during the first 2 y of life. Am J Clin Nutr. 2000; 72(6), 15581569.CrossRefGoogle ScholarPubMed
Fields, DA, Gilchrist, JM, Catalano, PM, Gianní, ML, Roggero, PM, Mosca, F. Longitudinal body composition data in exclusively breast-fed infants: a multicenter study. Obesity. 2011; 19(9), 18871891. DOI 10.1038/oby.2011.11.CrossRefGoogle ScholarPubMed
Fomon, SJ, Nelson, SE. Body composition of the male and female reference infants. Annu Rev Nutr. 2002; 22, 117.CrossRefGoogle ScholarPubMed
De Zegher, F, Sebastiani, G, Diaz, M, Sánchez-Infantes, D, Lopez-Bermejo, A, Ibáñez, L. Body composition and circulating high-molecular-weight adiponectin and IGF-I in infants born small for gestational age: breast- versus formula-feeding. Diabetes. 2012; 61(8), 19691973. DOI 10.2337/db11-1797.CrossRefGoogle ScholarPubMed
Escribano, J, Luque, V, Ferre, N, et al. Effect of protein intake and weight gain velocity on body fat mass at 6 months of age: The EU Childhood Obesity Programme. Int J Obes. 2012; 36(4), 548553. DOI 10.1038/ijo.2011.276.CrossRefGoogle ScholarPubMed
Mak R.H., CW. Cachexia in chronic kidney disease: role of inflammation and neuropeptide signaling. Curr Opin Nephrol Hypertens. 2007; 16(1), 2731.CrossRefGoogle Scholar
Martínez, JA, Cordero, P, Campión, J, Milagro, FI. Opening lecture: interplay of early-life nutritional programming on obesity, inflammation and epigenetic outcomes. P Nutr Soc. 2012; 71(2), 276283. DOI 10.1017/S0029665112000055.CrossRefGoogle Scholar
Madsen, AL, Larnkjær, A, Mølgaard, C, Michaelsen, KF. IGF-I and IGFBP-3 in healthy 9month old infants from the SKOT cohort: breastfeeding, diet, and later obesity. Growth Horm IGF Res. 2011; 21(4), 199204. DOI 10.1016/j.ghir.2011.05.003.CrossRefGoogle Scholar
Choh, AC, Curran, JE, Odegaard, AO, et al. Differences in the heritability of growth and growth velocity during infancy and associations with fto variants. Obesity. 2011; 19(9), 18471854. DOI 10.1038/oby.2011.175.CrossRefGoogle ScholarPubMed
Demerath, EW, Choh, AC, Czerwinski, SA, et al. Genetic and environmental influences on infant weight and weight change: the fels longitudinal study. Am J Hum Biol. 2007 10.1002/ajhb.20660.CrossRefGoogle ScholarPubMed
Strauss, RS, Dietz, WH. Low maternal weight gain in the second or third trimester increases the risk for intrauterine growth retardation. J Nutr. 1999; 129(5), 988993. DOI 10.1093/jn/129.5.988.CrossRefGoogle ScholarPubMed
Abrams, B, Selvin, S. Maternal weight gain pattern and birth weight. Obstet Gynecol. 1995; 86(2), 163169. DOI 10.1016/0029-7844(95)00118-B.CrossRefGoogle ScholarPubMed
Copelton, DA. "You are what you eat”: nutritional norms, maternal deviance, and neutralization of women’s prenatal diets. Deviant Behav. 2007; 28(5), 467494. DOI 10.1080/01639620701252571.CrossRefGoogle Scholar
Szwajcer, EM, Hiddink, GJ, Koelen, MA, van Woerkum, CMJ. Nutrition-related information-seeking behaviours before and throughout the course of pregnancy: consequences for nutrition communication. Eur J Clin Nutr. 2005; 59(S1), S57S65. DOI 10.1038/sj.ejcn.1602175.CrossRefGoogle ScholarPubMed
Reyes, NR, Klotz, AA, Herring, SJ. A qualitative study of motivators and barriers to healthy eating in pregnancy for low-income, overweight, African-American mothers. J Acad Nutr Diet. 2013; 113(9), 11751181. DOI 10.1016/j.jand.2013.05.014.CrossRefGoogle ScholarPubMed
Drewnowski, A, Eichelsdoerfer, P. The Mediterranean diet: does it have to cost more? Public Health Nutr. 2009; 12(9A), 16211628. DOI 10.1017/S1368980009990462.CrossRefGoogle ScholarPubMed
Chan, M. Statement at the High-Level Conference on World Food Security, 2008; pp. 1–2. WHO, Rome. http://www.fao.org/fileadmin/user_upload/foodclimate/statements/who_laroche.pdf.Google Scholar
Andrieu, E, Darmon, N, Drewnowski, A. Low-cost diets: more energy, fewer nutrients. Eur J Clin Nutr. 2006; 60(3), 434436. DOI 10.1038/sj.ejcn.1602331.CrossRefGoogle Scholar
Goulet, J, Lamarche, B, Lemieux, S. A nutritional intervention promoting a Mediterranean food pattern does not affect total daily dietary cost in North American women in free-living conditions. J Nutr. 2008; 138(1), 5459. DOI 10.1093/jn/138.1.54.CrossRefGoogle ScholarPubMed
Zazpe, I, Sanchez-Tainta, A, Estruch, R, et al. A large randomized individual and group intervention conducted by registered dietitians increased adherence to mediterranean-type diets: the PREDIMED study. J Am Diet Assoc. 2008; 108(7), 11341144. DOI 10.1016/j.jada.2008.04.011.CrossRefGoogle ScholarPubMed
Gonzalez-Nahm, S, Mendez, M, Robinson, W, et al. Low maternal adherence to a Mediterranean diet is associated with increase in methylation at the MEG3-IG differentially methylated region in female infants. Environ Epigenet. 2017; 3(2), 412. DOI 10.1093/eep/dvx007.CrossRefGoogle ScholarPubMed
Amati, F, Hassounah, S, Swaka, A. The impact of mediterranean dietary patterns during pregnancy on maternal and offspring health. Nutrients. 2019; 11(5), 1098. DOI 10.3390/nu11051098.CrossRefGoogle ScholarPubMed