Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-26T18:52:07.719Z Has data issue: false hasContentIssue false

Water-soluble peptides in Cheddar cheese: isolation and identification of peptides in the diafiltration retentate of the water-soluble fraction

Published online by Cambridge University Press:  01 June 2009

Tanoj K. Singh*
Affiliation:
Department of Food Chemistry, University College, Cork, Irish Republic National Food Biotechnology Centre, University College, Cork, Irish Republic
Patrick F. Fox
Affiliation:
Department of Food Chemistry, University College, Cork, Irish Republic National Food Biotechnology Centre, University College, Cork, Irish Republic
Áine Healy
Affiliation:
National Food Biotechnology Centre, University College, Cork, Irish Republic
*
For correspondence.

Summary

The water-soluble extract of Cheddar cheese was fractionated by diafiltration using 10 kDa cut-off membranes. Peptides were isolated from the diafiltrate retentate by chromatography on DEAE-cellulose with a linear NaCl gradient in 50 mM-Tris-HCl, pH 8·6, and reversed-phase HPLC or electroblotting from urea-PAGE gels. Peptides were identified by determining N-terminal amino acid sequences and mass spectrometry. Most (45) of the total 51 peptides identified in the diafiltrate retentate originated from β-casein, especially from a short region in the N-terminal half of the molecule. Only six peptides originated from αs1-casein; β-lactoglobulin was also identified in the retentate. The origin of most of these peptides could be explained on the basis of known specificities of lactococcal cell envelope proteinases.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Addeo, F., Chianese, L., Sacchi, R., Musso, S. S., Ferranti, P. & Malorni, A. 1994 Characterization of the oligopeptides of Parmigiano-Rcggiano cheese soluble in 120 g trichloroacetic acid/l. Journal of Dairy Research 61 365374CrossRefGoogle ScholarPubMed
Addeo, F., Chianese, L., Salzano, A., Sacchi, R., Cappuccio, U., Ferranti, P. & Malorni, A. 1992 Characterization of the 12% trichloroacetic acid-insoluble oligopeptides of Parmigiano-Reggiano cheese. Journal of Dairy Research 59 401411CrossRefGoogle Scholar
Adler-Nissen, J. 1986 A review of food protein hydrolysis-specific areas. In Enzymic Hydrolysis of Food Proteins, pp. 57109. London: Elsevier Applied ScienceGoogle Scholar
Andrews, A. T. 1983 Proteinases in normal bovine milk and their action on caseins. Journal of Dairy Research 50 4555CrossRefGoogle ScholarPubMed
Atlan, D., Gilbert, C., Blanc, B., Frot-Coutaz, J. & Portalier, R. 1993 Proteolytic system of lactobacilli. In The Lactic Acid Bacteria, pp. 3138 (Eds Foo, E. -L., Griffin, H. G., Mollby, R. and G.Heden, C.). Wymondham: Horizon Scientific PressGoogle Scholar
Belitz, H. -D. & Kaiser, K. -P. 1993 Monitoring of Cheddar cheese ripening by chemical indices of proteolysis. 3. Identification of several high-molecular mass peptides. Zeitschrift für Lebensmittel-Untersuchung und -Forschung 197 118122CrossRefGoogle ScholarPubMed
Bigelow, C. C. & Channon, M. 1976 Hydrophobicities of amino acids and proteins. In Handbook of Biochemistry and Molecular Biology, vol. 1, pp. 209243 (Ed. Fasman, G. D.). Cleveland, OH: CRC PressGoogle Scholar
Blakesley, R. W. & Boezi, J. A. 1977 A new staining technique for proteins in polyacrylamide gels using Coomassie brilliant blue G-250. Analytical Biochemistry 82 580582CrossRefGoogle Scholar
Creamer, L. K. & Olson, N. F. 1982 Rheological evaluation of maturing Cheddar cheese. Journal of Food Science 47 631636, 646CrossRefGoogle Scholar
Eigel, W. N., Butler, J. E., Ernstrom, C. A., Farrell, H. M., Harwalkar, V. R., Jenness, R. & Whitney, R. McL. 1984 Nomenclature of proteins of cow's milk: fifth revision. Journal of Dairy Science 67 15991631CrossRefGoogle Scholar
Exterkate, F. A., Alting, A. C. & Bruinenberg, P. G. 1993 Diversity of cell envelope proteinase specificity among strains of Lactococcus lactis and its relationship to charge characteristics of the substrate-binding region. Applied and Environmental Microbiology 59 36403647CrossRefGoogle ScholarPubMed
Farkye, N. Y. & Fox, P. F. 1990 Preliminary study on the contribution of plasmin to proteolysis in Cheddar cheese: cheese containing plasmin inhibitor, 6-amino hexanoic acid. Journal of Agricultural and Food Chemistry 39 786788CrossRefGoogle Scholar
Fox, P. F. 1989 Proteolysis during cheese manufacture and ripening. Journal of Dairy Science 72 13791400CrossRefGoogle Scholar
Fox, P. F., Singh, T. K. & McSweeney, P. L. H. 1994 Proteolysis in cheese during ripening. In Biochemistry of Milk Products, pp. 131 (Eds Andrews, A. T. and Varley, J.). London: Royal Society of ChemistryGoogle Scholar
Hill, R. D., Lahav, E. & Givol, D. 1974 A rennin-sensitive bond in αs1 B-casein. Journal of Dairy Research 41 147153CrossRefGoogle ScholarPubMed
Jordan, K. N. & Cogan, T. M. 1993 Identification and growth of non-starter lactic acid bacteria in Irish Cheddar cheese. Irish Journal of Agricultural and Food Research 32 4755Google Scholar
Kaminogawa, S., Tan, T. -R., Azuma, N. & Yamauchi, K. 1986 Identification of low molecular weight peptides in Gouda-type cheese and evidence for the formation of these peptides from 23 N-terminal residues of αs1-casein by proteinases of Streptococcus cremoris H61. Journal of Food Science 51 12531256, 1264CrossRefGoogle Scholar
Kelly, M. 1993 Effect of Salt and Moisture Contents on Proteolysis in Cheddar Cheese during Ripening. MSc thesis, National University of Ireland, CorkGoogle Scholar
Kok, J. 1993 Genetics of proteolytic enzymes of lactococci and their role in cheese flavor development. Journal of Dairy Science 76 20562064CrossRefGoogle Scholar
Kuchroo, C. N. & Fox, P. F. 1982 Soluble nitrogen in Cheddar cheese. Comparison of extraction procedures. Milchwissenschaft 37 331335Google Scholar
Le Bars, D. & Gripon, J. C. 1989 Specificity of plasmin towards bovine αs2-casein. Journal of Dairy Research 56 817821CrossRefGoogle Scholar
Le Bars, D. & Gripon, J. C. 1993 Hydrolysis of αs1-casein by bovine plasmin. Lail 73 337344Google Scholar
McSweeney, P. L. H., Olson, N. F., Fox, P. F. & Healy, A. 1994 a Proteolysis of bovine αs2-casein by chymosin. Zeitschrift für Lebensmittel-Untersuchung und -Forschung 199 429432CrossRefGoogle Scholar
McSweeney, P. L. H., Olson, N. F., Fox, P. F., Healy, A. & Hojrup, P. 1993 a Proteolytic specificity of chymosin on bovine αs1-casein. Journal of Dairy Research 60 401412CrossRefGoogle Scholar
McSweeney, P. L. H., Olson, N. F., Fox, P. F., Healy, A. & Hojrup, P. 1993 b Proteolytic specificity of plasmin on bovine αs1-casein. Food Biotechnology 7 143158CrossRefGoogle Scholar
McSweeney, P. L. H., Pochet, S., Fox, P. F. & Healy, Á. 1994 b Partial identification of peptides from the water-insoluble fraction of Cheddar cheese. Journal of Dairy Research 61 587590CrossRefGoogle ScholarPubMed
Monnet, V., Chapot-Chartier, M. P. & Gripon, J. -C. 1993 [The peptidases of lactococci.] Lait 73 97108CrossRefGoogle Scholar
Nby, K. H. 1979 Bitterness of peptides: amino acid composition and chain length. In Food, Taste Chemistry, pp. 149173 (Ed. Boudreau, J. C.). Washington, DC: American Chemical Society (ACS Symposium Series no. 115)Google Scholar
Ollikainen, P. & KivelÄ, T. 1989 The importance of plasmin in Swiss-type cheese ripening. Milchwissenschaft 44 204206Google Scholar
O'Sullivan, M. & Fox, P. F. 1990 A scheme for the partial fractionation of cheese peptides. Journal of Dairy Research 57 135139CrossRefGoogle Scholar
PÉlissier, J. -P., Mercier, J. -C. & Ribadeau-Dumas, B. 1974 [Study of the proteolysis of bovine αs1- and β-caseins by rennet. Specificity of action. Bitter peptides released.] Annales de Biologie Animate, Biochimie, Biophysique 14 343362Google Scholar
Singh, T. K., Fox, P. F., Hojrup, P. & Healy, A. 1994 A scheme for the fractionation of cheese nitrogen and identification of principal peptides. International Dairy Journal 4 111122CrossRefGoogle Scholar
Tan, P. S. T., Poolman, B. & Konings, W. N. 1993 Review article. Proteolytic enzymes of Lactococcus lactis. Journal of Dairy Research 60 269286CrossRefGoogle ScholarPubMed
Visser, F. M. W. & De Groot-Mostert, A. E. A. 1977 Contribution of enzymes from rennet, starter bacteria and milk to proteolysis and flavour development in Gouda cheese. 4. Protein breakdown: a gel electrophoretic study. Netherlands Milk and Dairy Journal 31 247264Google Scholar
Visser, S. 1993 Proteolytic enzymes and their relation to cheese ripening and flavor: an overview. Journal of Dairy Science 76 329350CrossRefGoogle Scholar
Visser, S. & Slangen, K. J. 1977 On the specificity of chymosin (rennin) in its action on bovine β-casein. Netherlands Milk and Dairy Journal 31 1630Google Scholar
Visser, S., Slangen, K. J., Alting, A. C. & Vreeman, H. J. 1989 Specificity of bovine plasmin in its action on bovine αs2-casein. Milchxoissenschaft 44 335339Google Scholar
Visser, S., Slangen, K. J., Hup, G., Exterkate, F. A. & Stadhouders, J. 1983 a The bitter flavour defect in cheese; some chemical and microbiological aspects. Netherlands Milk and Dairy Journal 37 250251Google Scholar
Visser, S., Slangen, K. J., Hup, G. & Stadhouders, J. 1983 b Bitter flavour in cheese. 3. Comparative gel- chromatographic analysis of hydrophobic peptide fractions from twelve Gouda-type cheeses and identification of bitter peptides isolated from a cheese made with Streptococcus cremoris strain HP. Netherlands Milk and Dairy Journal 37 181192Google Scholar