Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T11:49:12.925Z Has data issue: false hasContentIssue false

Factors affecting the viscosity of caseinates in dispersions of high concentrations

Published online by Cambridge University Press:  01 June 2009

J. F. Hayes
Affiliation:
Division of Dairy Research, C.S.I.R.O., Melbourne, Australia
Pamela M. Southby
Affiliation:
Division of Dairy Research, C.S.I.R.O., Melbourne, Australia
L. L. Muller
Affiliation:
Division of Dairy Research, C.S.I.R.O., Melbourne, Australia

Summary

The physical effects of various cations in caseinate dispersions of high concentrations were investigated over a range of temperature and pH.

With calcium and strontium the temperature-viscosity relationships of the caseinates were abnormal in that the viscosity decreased rapidly from 30 to about 40 °C and a gel formed at temperatures in the region of 50–60 °C. On cooling, the gel reliquefied. No gel formed with barium, aluminium or magnesium. On cooling, magnesium preparations separated into 2 phases.

The supernatant phase from the magnesium caseinate and a corresponding phase prepared by centrifuging the calcium caseinate showed depletion of α-casein and enrichment of κ-casein and β-casein. The supernatant phase from the calcium caseinate showed the reversible gel formation on heating. The magnesium supernatant phase did not. κ-Casein and a mixture of κ- and β-caseins gave reversible gels at similar levels of calcium and pH.

For reversible gel formation to occur, calcium caseinate was required to be in fairly high concentration, to have a calcium content of about 1·0% of the protein and to be within the pH limits 5·2–6·0. The temperature at which gelation occurred was affected by the concentration of calcium and protein and by pH.

The behaviour of the material was compared with that of methyl cellulose with and without addition of urea.

Some potential commercial applications of the findings on viscosity relationships are outlined.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chanutin, A., Ludewig, S. & Masket, A. V. (1942). J. biol. Chem. 143, 737.CrossRefGoogle Scholar
Hankinson, C. L. & Briggs, D. R. (1941). J. phys. Chem. 45, 943.CrossRefGoogle Scholar
Hayes, J. F. & Muller, L. L. (1961). Aust. J. Dairy Technol. 16, 265.Google Scholar
Hildebrand, G. P. & Reilley, C. N. (1957). Analyt. Chem. 29, 258.CrossRefGoogle Scholar
Hill, R. D. & Hansen, R. R. (1963). J. Dairy Res. 30, 375.CrossRefGoogle Scholar
Kenkara, D. B. & Hansen, P. M. T. (1967). J. Dairy Sci. 50, 135.CrossRefGoogle Scholar
Kruyt, H. R. (ed.) (1952). Colloid Science, vol. 1, p. 25. Amsterdam: Elsevier Publishing Co.Google Scholar
Murayama, M. (1957). J. biol. Chem. 228, 231.CrossRefGoogle Scholar
Murayama, M. (1966). Science, N.Y. 153, 145.CrossRefGoogle Scholar
Nakajima, M. & Shimizu, K. (1962). Aust. Patent 255685.Google Scholar
Neet, K. E. & Putnam, F. W. (1966). J. biol. Chem. 241, 2320.CrossRefGoogle Scholar
Payens, T. A. J. (1966). J. Dairy Sci. 49, 1317.CrossRefGoogle Scholar
Sawyer, W. & Hayes, J. F. (1961). Aust. J. Dairy Technol. 16, 108.Google Scholar
Scheraga, H. A. (1965). The Proteins (ed. Neurath, H.), vol. I, p. 522. New York: Academic Press.Google Scholar
Tanford, C. (1962). J. Am. chem. Soc. 84, 4240.CrossRefGoogle Scholar
Tarassuk, N. P. & Palmer, L. S. (1939). J. Dairy Sci. 22, 543 (footnote p. 549).CrossRefGoogle Scholar
Thewlis, B. H. (1961). Nature, Lond. 190, 260.CrossRefGoogle Scholar
Van wazer, J. R. (1966). Phosphorus and its Compounds, 1st edn. New York: Interscience.Google Scholar
Wake, R. G. & Baldwin, R. L. (1961). Biochim. biophys. Acta 47, 225.CrossRefGoogle Scholar
Warren, L. (1959). J. biol. Chem. 234, 1971.CrossRefGoogle Scholar
Waugh, D. F. & Von hippel, P. H. (1956). J. Am. chem. Soc. 78, 4576.CrossRefGoogle Scholar
Wetlaufer, D. B., Malik, S. K., Stoller, L. & Coffin, R. L. (1964). J. Am. chem. Soc. 86, 508.CrossRefGoogle Scholar
Whitaker, R., Sherman, J. M. & Sharp, P. F. (1927). J. Dairy Sci. 10, 361.CrossRefGoogle Scholar
Young, A. E. & Kin, M. (1946). Colloid Chemistry (ed. Alexander, J.), vol 6, p. 926. New York: Reinhold.Google Scholar
Zittle, C. A. (1957). J. Dairy Sci. 40, 597.CrossRefGoogle Scholar
Zittle, C. A., Dellamonica, E. S. & Custer, J. H. (1956). J. Dairy Sci. 39, 1651.CrossRefGoogle Scholar
Zittle, C. A., Dellamonica, E. S., Rudd, R. K. & Custer, J. H. (1958). Archs Biochem. Biophys. 76, 342.CrossRefGoogle Scholar