Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-27T23:08:54.840Z Has data issue: false hasContentIssue false

Action of milk-clotting enzymes on β-caseins from buffalo's and cow's milk

Published online by Cambridge University Press:  01 June 2009

Safinaz El-Shibiny
Affiliation:
Laboratory of Food Technology and Dairying, National Research Centre, Cairo, Egypt
M. H. Abd El-Salam
Affiliation:
Laboratory of Food Technology and Dairying, National Research Centre, Cairo, Egypt

Summary

β-Caseins isolated from buffalo's and cow's milk were hydrolysed either with rennet or with microbial proteases from Mucor miehei, M. pusillus Lindt or Endothia parasitica. The degradation products were separated by polyacrylamide-gel electrophoresis and the residual β-casein was determined quantitatively after various times. The electrophoretic patterns of the degradation products of buffalo and bovine β-casein produced by the different enzymes were not identical. β-Casein of buffalo's milk was hydrolysed by rennet and M. miehei protease at a slower rate than that of cow's milk. The reverse was found with E. parasitica and M. pusillus Lindt proteases. Carbamylation of buffalo β-casein was found to retard its proteolysis by all the enzymes but particularly by rennet and M. miehei protease.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abd El-Salam, M. H. & El-Shibiny, S. (1972). Journal of Dairy Research 39, 219.CrossRefGoogle Scholar
Abd El-Salam, M. H. & El-Shibiny, S. (1975). Journal of Dairy Research 42, 163.CrossRefGoogle Scholar
Alderlieste, P. J. (1972). Officieel Orgaan, Koninklijke Nederlandse ZuiveWond FNZ 64, 294.Google Scholar
Babel, F. J. & Somkuti, G. A. (1968). Journal of Dairy Science 51, 937.Google Scholar
Berridge, N. J. (1945). Biochemical Journal 39, 179.CrossRefGoogle Scholar
Creamer, L. K., Mills, O. E. & Richards, E. L. (1971). Journal of Dairy Research 38, 269.CrossRefGoogle Scholar
Davis, B. J. (1964). Annals of the New York Academy of Sciences 121, 404.CrossRefGoogle Scholar
Edelsten, D., Hamdy, A. & El Kousy, L. (1969). Arsskrift den Kongelige Veterinœr- og Land bohøojskols, p. 201.Google Scholar
El-Shibiny, S. & Abd El-Salam, M. H. (1976). Milchwissenschaft 31, 80.Google Scholar
Fox, P. F. & Guiney, J. (1973). Journal of Dairy Research 40, 229.CrossRefGoogle Scholar
Hill, R. D. & Craker, B. A. (1968). Journal of Dairy Research 35, 13.CrossRefGoogle Scholar
Jago, G. R. (1974). Australian Journal of Dairy Technology 29, 94.Google Scholar
Ornstein, L. (1964). Annals of the New York Academy of Sciences 121, 321.CrossRefGoogle Scholar
Prins, J. & Nielsen, T. K. (1970). Process Biochemistry 5 (5), 3.Google Scholar
Richardson, G. H., Nelson, J. H., Lubnow, R. E. & Schwarberg, R. L. (1967). Journal of Dairy Science 50, 1066.CrossRefGoogle Scholar
Stark, G. R. (1967). Methods in Enzymology 11, 125.CrossRefGoogle Scholar
Stark, G. R. & Smyth, D. G. (1963). Journal of Biological Chemistry 238, 214.CrossRefGoogle Scholar
Sternberg, M. (1972). Biochimica et Biophysica Acta 285, 383.CrossRefGoogle Scholar
Vanderpoorten, R. & Weckx, M. (1972). Netherlands Milk and Dairy Journal 26, 47.Google Scholar