Hostname: page-component-cd4964975-96cn4 Total loading time: 0 Render date: 2023-03-29T18:37:27.706Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Constitutive nature of the enzymes of citrate metabolism in Streptococcus lactis subsp. diacetylactis

Published online by Cambridge University Press:  01 June 2009

Timothy M. Cogan
The Agricultural Institute, Fermoy, Co. Cork, Irish Republic


Four enzymes of citrate metabolism (viz. citrate lyase, acetolactate synthase, diacetyl reductase and acetoin reductase) were constitutively present in cells of several strains of Streptococcus lactis subsp. diacetylactis. In strain DRC1, which was studied in detail, diacetyl reductase and acetoin reductase were partly repressed and acetolactate synthase partly induced by growth on citrate. The stage of growth also affected the formation of each enzyme. The buffer species affected the activity of acetolactate synthase, diacetyl reductase and acetoin reductase.

Original Articles
Copyright © Proprietors of Journal of Dairy Research 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Brown, T. D. K., Pereira, C. R. S. & Størmer, F. C. (1972). Journal of Bacteriology 112, 11061111.Google Scholar
Bryn, K., Hetland, Ø. & Størmer, F. C. (1971). European Journal of Biochemistry 18, 116119.CrossRefGoogle Scholar
Cogan, T. M. (1975). Journal of Dairy Research 42, 139146.CrossRefGoogle Scholar
Collins, E. B. & Bruhn, J. C. (1970). Journal of Bacteriology 103, 541546.Google Scholar
Drinan, D. F., Tobin, S. & Cogan, T. M. (1976). Applied and Environmental Microbiology 31, 481486.Google Scholar
Harvey, R. J. & Collins, E. B. (1961). Journal of Bacteriology 82, 954959.Google Scholar
Harvey, R. J. & Collins, E. B. (1963 a). Journal of Bacteriology 86, 13011307.Google Scholar
Harvey, R. J. & Collins, E. B. (1963 b). Journal of Biological Chemistry 238, 26482653.Google Scholar
Kempler, G. M. & Mckay, L. L. (1979). Applied and Environmental Microbiology 37, 316323.Google Scholar
Kümmel, A., Behrens, G. & Gottschalk, G. (1975). Archives of Microbiology 102, 111116.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951) Journal of Biological Chemistry 193, 265275.Google Scholar
Mellerick, D. & Cogan, T. M. (1981). Journal of Dairy Research 48.CrossRefGoogle Scholar
O'Brien, R. W. (1975 a). Journal of Bacteriology 122, 468473.Google Scholar
O'Brien, R. W. (1975 b). Journal of Bacteriology 124, 10841088.Google Scholar
O'Brien, R. W. & Geisler, J. (1974). Journal of Bacteriology 119, 661665.Google Scholar
Reiter, B. & Oram, J. D. (1962). Journal of Dairy Research 29, 6377.Google Scholar
Seitz, E. W., Sandine, W. E., Elliker, P. R. & Day, E. A. (1963). Canadian Journal of Microbiology 9, 431441.CrossRefGoogle Scholar
Singh, M. & Srere, P. A. (1975). Journal of Biological Chemistry 250, 58185825.Google Scholar
Speckman, R. A. & Collins, E. B. (1968). Journal of Bacteriology 95, 174180.Google Scholar
Størmer, F. C. (1968). FEBS Letters 2, 3638.Google Scholar
Westerfeld, W. W. (1945). Journal of Biological Chemistry 161, 495502.Google Scholar