Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-l8xdn Total loading time: 0.482 Render date: 2023-02-07T16:14:11.970Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

318 Building A Better CAR: Improving CAR-T Trafficking in Cancer Therapy

Published online by Cambridge University Press:  19 April 2022

Yeonsun Hong
Affiliation:
University of Rochester School of Medicine and Dentistry
Hye-Ran Kim
Affiliation:
University of Rochester School of Medicine and Dentistry
Brandon L. Walling
Affiliation:
University of Rochester School of Medicine and Dentistry
John Lozada
Affiliation:
University of Rochester School of Medicine and Dentistry
Andrea M. Amitrano
Affiliation:
University of Rochester School of Medicine and Dentistry
Cooper J. Sailer
Affiliation:
University of Rochester School of Medicine and Dentistry
Kihong Lim
Affiliation:
University of Rochester School of Medicine and Dentistry
Raj Kumar Mongre
Affiliation:
University of Rochester School of Medicine and Dentistry
Kyun-Do Kim
Affiliation:
University of Rochester School of Medicine and Dentistry
Tara Capece
Affiliation:
University of Rochester School of Medicine and Dentistry
Elena B. Lomakina
Affiliation:
University of Rochester School of Medicine and Dentistry
Nicholas S. Reilly
Affiliation:
University of Rochester School of Medicine and Dentistry
Richard E. Waugh
Affiliation:
University of Rochester School of Medicine and Dentistry
Patrick M. Reagan
Affiliation:
University of Rochester School of Medicine and Dentistry
Minsoo Kim
Affiliation:
University of Rochester School of Medicine and Dentistry
Patrick W. Oakes
Affiliation:
Loyola University
Chang-Duk Jun
Affiliation:
GIST
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

OBJECTIVES/GOALS: #NAME? METHODS/STUDY POPULATION: Cell culture & protein identification: human T cells were purified from healthy blood, then activated & cultured for 5d. CAR-T cells were collected from infusion bags of cancer patients undergoing CAR-T. Silver staining of naive & activated healthy T-cell lysates was compared; B-II spectrin was upregulated and confirmed by Western blot. Migration assays: naive & activated T-cells were imaged during migration on ICAM-1 and ICAM-1 + CXCL12 coated plates. T-cells were transfected with BII-spectrin cDNA & the chemokine dependence of migration was compared with controls. In-vivo studies: in a melanoma mouse model, BII-spectrin transfected or control T-cells were injected; tumors were followed with serial imaging. Human patient records were examined to correlate endogenous BII-spectrin levels and CAR-T response. RESULTS/ANTICIPATED RESULTS: Activated T-cells downregulate the cytoskeletal protein B-II spectrin compared to naive cells, leading to chemokine-independent migration in in vitro assays and off-target trafficking when CAR-T cells are given in vivo. Restoration of B-II spectrin levels via transfection restores chemokine-dependence of activated T-cells. In a mouse melanoma model, control mice injected with standard activated T-cells showed fewer cells in the tumor site and more cells in the off-target organs (spleen, lungs) when compared to mice injected with B-II spectrin transfected cells. Furthermore, among 3 human patients undergoing CAR-T therapy, those with higher endogenous B-II spectrin levels experienced fewer side-effects, measured by the neurotoxicity and cytokine release syndrome grades. DISCUSSION/SIGNIFICANCE: A major hurdle to widespread CAR-T therapy for cancer is significant, often fatal side-effects. Our work shows that the protein B-II spectrin is downregulated during CAR-T production, and that restoring B-II spectrin levels decreases side-effects while increasing tumor clearance--hopefully translating to better CAR-T regimens for the future.

Type
Valued Approaches
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Author(s), 2022. The Association for Clinical and Translational Science
You have Access Open access

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

318 Building A Better CAR: Improving CAR-T Trafficking in Cancer Therapy
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

318 Building A Better CAR: Improving CAR-T Trafficking in Cancer Therapy
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

318 Building A Better CAR: Improving CAR-T Trafficking in Cancer Therapy
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *