Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-xwjfq Total loading time: 0.402 Render date: 2023-01-30T02:43:28.043Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

22511 Glycolipid-loaded nanoparticles harness iNKT cells for tumor immunotherapy

Published online by Cambridge University Press:  30 March 2021

Travis Shute
Affiliation:
UT Health San Antonio
Elizabeth Dudley
Affiliation:
UT Health San Antonio
Andrew Lai
Affiliation:
UT Health San Antonio
Briana Salas
Affiliation:
UT Health San Antonio
Brandy Vincent
Affiliation:
UTSA
Daniel Angel
Affiliation:
UTSA
Kelly Nash
Affiliation:
UTSA
Elizabeth Leadbetter
Affiliation:
UT Health San Antonio
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

ABSTRACT IMPACT: My work is on the development of a novel tumor immunotherapy to treat various types of cancer OBJECTIVES/GOALS: As iNKT cells can have direct and indirect killing effects on tumor cells, we propose a novel strategy for activating iNKT cells, via a PLGA nanoparticle delivery platform, to promote anti-tumor immune responses. METHODS/STUDY POPULATION: Poly-lactic-co-glycolic acid (PLGA) nanoparticles can be reproducibly loaded with an iNKT cell glycolipid agonist, alpha-galactosylceramide (αGalCer), and a tumor associated antigen, ovalbumin (OVA). We then test our nanoP prophylactically and therapeutically against a murine model of melanoma, B16F10-OVA. RESULTS/ANTICIPATED RESULTS: These dual-loaded PLGA nanoparticles rapidly activate iNKT cells in vivo to produce IFNgamma. Furthermore, in an in vivo model of melanoma, using B16F10-OVA cells, both prophylactic and therapeutic administration of nanoparticles containing αGalCer and OVA led to decreased tumor cell growth and increased survival. We also show our nanoparticle therapy has synergistic potential with clinically used immune checkpoint blockade (ICB) therapies, anti-PD-1 and anti-CTLA-4, indicated by the significance increase in survival and lower tumor growth rate of ICB +nanoP treated mice compared to either ICB or nanoP alone. DISCUSSION/SIGNIFICANCE OF FINDINGS: This novel delivery system provides a platform with tremendous potential to harness iNKT cells for cancer immunotherapy purposes against many cancer types.

Type
Basic Science
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Association for Clinical and Translational Science 2021
You have Access Open access

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

22511 Glycolipid-loaded nanoparticles harness iNKT cells for tumor immunotherapy
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

22511 Glycolipid-loaded nanoparticles harness iNKT cells for tumor immunotherapy
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

22511 Glycolipid-loaded nanoparticles harness iNKT cells for tumor immunotherapy
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *