Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T18:47:33.895Z Has data issue: false hasContentIssue false

Overusing the pacifier during infancy sets a footprint on abstract words processing

Published online by Cambridge University Press:  29 April 2020

Laura BARCA*
Affiliation:
Institute of Cognitive Sciences and Technologies, CNR, Rome, Italy
Claudia MAZZUCA
Affiliation:
Department of Psychology, University of York, UK
Anna M. BORGHI
Affiliation:
Institute of Cognitive Sciences and Technologies, CNR, Rome, Italy Department of Dynamic and Clinical Psychology, La Sapienza University of Rome, Italy
*
*Corresponding author: Laura Barca, ISTC-CNR, Via San Martino della Battaglia 44, 00141Rome, Italy E-mail: laura.barca@istc.cnr.it

Abstract

Perturbations to the speech articulators induced by frequently using an interfering object during infancy (i.e., pacifier) might shape children's language experience and the building of conceptual representations. Seventy-one typically developing third graders performed a semantic categorization task with abstract, concrete and emotional words. Children who used the pacifier for a more extended period were slower than the others. Moreover, overusing the pacifier increased response time of abstract words, whereas emotional and (above all) concrete words were less affected. Results support the view that abstract words are grounded both in perception-action and in linguistic experience.

Type
Brief Research Reports
Copyright
Copyright © Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, M., Poggiali, D., Whitaker, K., Marshall, T.R., & Kievit, R.A. (2019). Raincloud plots: a multi-platform tool for robust data visualization [version 1; peer review: 2 approved]. Wellcome Open Research, 4:63, https://doi.org/10.12688/wellcomeopenres.15191.1CrossRefGoogle Scholar
Baayen, R.H. (2008). Analyzing linguistic data. A practical introduction to statistics using R. Cambridge University Press.CrossRefGoogle Scholar
Barca, L. (2019). Toward a speech-motor account of the effect of age of pacifier withdrawal. https://doi.org/10.31219/osf.io/whmp3CrossRefGoogle Scholar
Barca, L., Benedetti, F., & Pezzulo, G. (2015). The effects of phonological similarity on the semantic categorization of pictorial and lexical stimuli: evidence from continuous behavioral measures. Journal of Cognitive Psychology, DOI: 10.1080/20445911.2015.1101117Google Scholar
Barca, L., Cornelissen, P., Simpson, M., Urooj, U., Woods, W., & Ellis, A.W. (2011). The neural basis of the right visual field advantage in reading: An MEG analysis using virtual electrodes. Brain & Language, 118, 5371.CrossRefGoogle ScholarPubMed
Barca, L., Ellis, A.W., & Burani, C. (2007). Context-sensitive rules and word naming in Italian children. Reading and Writing, 20, 495509.CrossRefGoogle Scholar
Barca, L., Pezzulo, G., Ouellet, M., & Ferrand, L. (2017a). Dynamic lexical decision in French: Evidence for a feedback inconsistency effect. Acta Psychologica, 180, 2332. DOI: 10.1016/j.actpsy.2017.08.005CrossRefGoogle Scholar
Barca, L., Mazzuca, C., & Borghi, A. (2017b). Pacifier overuse and conceptual relations of abstract and emotional concepts. Frontiers in Psychology. Doi: 10.3389/fpsyg.2017.02014.CrossRefGoogle Scholar
Barca, L., Pezzulo, G., Castrataro, M., Rinaldi, P., & Caselli, M.C. (2013). Visual word recognition in deaf readers: Lexicality is modulated by communication mode. PlosOne, 8(3):e59080.CrossRefGoogle ScholarPubMed
Barca, L., Napolitano, A., Castrataro, M., Rinaldi, P., Cannatà, V., & Caselli, M.C. (2019). ‘Neural correlates of covert word reading in hearing and deaf adults’. In Sulpizio, S., Barca, L., Primativo, S. & Arduino, L.S., (Eds.), Word recognition, morphology and lexical reading. College Publication.Google Scholar
Barr, D.J., Levy, R., Scheepers, C., & Tily, H.J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. J. Mem. Lang. 68 (3), 255278.CrossRefGoogle ScholarPubMed
Barsalou, L. W. (2003). Abstraction in perceptual symbol systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1435), 11771187.CrossRefGoogle ScholarPubMed
Barsalou, L. W. (2008). Grounded cognition. Annual. Review of Psychology, 59, 617645.CrossRefGoogle ScholarPubMed
Barsalou, L. W., & Wiemer-Hastings, K. (2005). Situating abstract concepts. In Zwaan, R. & Pecher, D. (eds). Grounding cognition: The role of perception and action in memory, language, and thought, 129163. Cambridge University Press.CrossRefGoogle Scholar
Barton, K. (2017). Package ‘MuMIn’. https://CRAN.R-project.org/package=MuMIn.Google Scholar
Bates, E., Burani, C., D'Amico, S., & Barca, L. (2001). Word reading and picture naming in Italian. Memory & Cognition, 29, 986999.CrossRefGoogle ScholarPubMed
Bates, D., & Maechler, M. (2009) lme4: Linear mixed-effects models using s4 classes [Computer software manual]. Available from http://CRAN.R-project.org/package=lme4.Google Scholar
Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens, M.H., & White, J.S. (2009). Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology and Evolution. 24(3): 127–35.CrossRefGoogle ScholarPubMed
Borghi, A.M., Barca, L., Binkofski, F., Castelfranchi, C., Pezzulo, G., & Tummolini, L. (2019).Words as social tools: Language, sociality and inner grounding in abstract concepts. Physics of Life Reviews. 29, 2120–135Google ScholarPubMed
Borghi, A.M., Barca, L., Binkofski, F., & Tummolini, L. (2018).Varieties of abstract concepts: development, use and representation in the brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 20170121. http://dx.doi.org/10.1098/rstb.2017.0121.CrossRefGoogle Scholar
Borghi, A.M., & Binkofski, F. (2014). Words as social tools: An embodied view on ACs. Berlin and New York: Springer.Google Scholar
Borghi, A.M., Binkofski, F., Cimatti, F., Scorolli, C., & Tummolini, L. (2017). The challenge of ACs. Psychological Bulletin, 3, 263292.CrossRefGoogle Scholar
Borghi, A. M., Flumini, A., Cimatti, F., Marocco, D., & Scorolli, C. (2011). Manipulating objects and telling words: a study on concrete and abstract words acquisition. Frontiers in psychology, 2.CrossRefGoogle Scholar
Borghi, A.M., & Zarcone, E. (2016). Grounding abstractness: ACs and the activation of the mouth. Frontiers in Psychology, 7:1498.CrossRefGoogle Scholar
Bruderer, A.G., Danielson, D.K., Kandhadai, P., & Werker, J.F. (2015). Sensorimotor influences on speech perception. PNAS, 112, 1352113536.CrossRefGoogle ScholarPubMed
Burani, C., Barca, L., & Ellis, A.W. (2009). Orthographic complexity and word naming in Italian: Some words are more transparent than others. Psychonomic Bulletin & Review, 13, 346352.CrossRefGoogle Scholar
Cohen, J. (1992). A Power Primer. Psychological Bulletin, 112, 155159.CrossRefGoogle ScholarPubMed
Connell, L., Lynott, D., & Banks, B. (2018). Interoception: the forgotten modality in perceptual grounding of abstract and concrete concepts. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170143.CrossRefGoogle ScholarPubMed
Martínez, H. D. R. (2015). Analysing interactions of fitted models. Retrieved from http://cran.wustl.edu/web/packages/phia/vignettes/phia.pdfGoogle Scholar
Della Rosa, P. A., Catricalà, E., Vigliocco, G., & Cappa, S. F. (2010). Beyond the abstract-concrete dichotomy: mode of acquisition, concreteness, imageability, familiarity, age of acquisition, context availability, and abstractness norms for a set of 417 Italian words. Behavior Research Methods, 42(4), 10421048.CrossRefGoogle ScholarPubMed
Della Rosa, A., Catricalà, E., Canini, M., Vigliocco, G., & Cappa, S.F. (2018). The left inferior frontal gyrus: A neural crossroads between abstract and concrete knowledge. Neuroimage, 175, 449459.CrossRefGoogle ScholarPubMed
Dove, G. (2014). Thinking in words: language as an embodied medium of thought. Topics in cognitive science, 6(3), 371389.CrossRefGoogle Scholar
Dove, G. (2016). Three symbol ungrounding problems: Abstract concepts and the future of embodied cognition. Psychonomic Bulletin & Review, 23(4), 11091121.CrossRefGoogle ScholarPubMed
Dove, G. (2019). More than a scaffold: Language is a neuroenhancement. Cognitive neuropsychology, 124.Google ScholarPubMed
Glenberg, A. M., & Gallese, V. (2012). Action-based language: A theory of language acquisition, comprehension, and production. Cortex, 48(7), 905922.CrossRefGoogle Scholar
Goldstein, M., King, A.P., & West, M.J. (2003). Social interaction shapes babbling: Testing parallels between birdsong and speech. Proceedings of the National Academy of Science, 13, 80308035.CrossRefGoogle Scholar
Granito, C., Scorolli, C., & Borghi, A.M. (2015). Naming a Lego World. The Role of Language in the Acquisition of ACs. PloS one, 10(1), e0114615.CrossRefGoogle Scholar
Hale, S. C. (1988). Spacetime and the abstract/concrete distinction. Philosophical Studies, 53(1), 85102.CrossRefGoogle Scholar
Jeager, T.F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59, 434446.CrossRefGoogle Scholar
Kousta, S.-T., Vigliocco, G., Vinson, D. P., Andrews, M., & Del Campo, E. (2011). The representation of abstract words: Why emotion matters. Journal of Experimental Psychology: General, 140, 1434.CrossRefGoogle ScholarPubMed
Korlahalli, A., Shivaprakash, P.K., & Noorani, H. (2014). Impact of maternal education and dental visit on age of pacifier withdrawal and caries incidence. The Journal of Dental Panacea, 1, 7783.CrossRefGoogle Scholar
Kuznetsova, A., Brockhoff, P.B., & Christensen, R.H.B. (2016). Package ‘lmerTest’ [package manual]. Available: https://cran.r-project.org/web/packages/lmerTest/index.htmlGoogle Scholar
Ludecke, D. (2018). sjPlot: Data Visualization for Statistics in Social Science. R package version 2.4.1.9000, https://CRAN.R-project.org/package=sjPlot.Google Scholar
Lund, T. C., Sidhu, D. M., & Pexman, P. M. (2019). Sensitivity to emotion information in children's lexical processing. Cognition, 190, 6171.CrossRefGoogle ScholarPubMed
Mazzuca, C., Barca, L., & Borghi, C. (2017). The particularity of emotional words. Rivista internazionale di Filosofia e Psicologia, 8 (2), 124133.Google Scholar
Mazzuca, C., Lugli, L., Benassi, M., Nicoletti, R., & Borghi, A.M. (2018). Abstract, emotional and concrete concepts and the activation of mouth-hand effectors. PeerJ, 6: e5987.CrossRefGoogle ScholarPubMed
Merz, E., Maskus, E.A., Melvin, S.A., He, X., & Noble, K.G. (2019). Socioeconomic disparities in language input are associated with children language-related brain structure and reading skills. Child Development, 00, 115.Google Scholar
Moffat, M., Siakaluk, P. D., Sidhu, D. M., & Pexman, P. M. (2015). Situated conceptualization and semantic processing: effects of emotional experience and context availability in semantic categorization and naming tasks. Psychonomic Bulletin & Review, 22(2), 408–19.CrossRefGoogle ScholarPubMed
Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from Generalized Linear Mixed-effects Models. Methods in Ecology and Evolution 4, 133142.CrossRefGoogle Scholar
Napolitano, A., Andellini, M., Cannatà, V., Randisi, F., Bernardi, B., Castrataro, M., Pezzulo, G., Rinaldi, P., Caselli, M.C., & Barca, L. (2019, April 15). Analysis of Group ICA functional connectivity of task-driven fMRI: application to language processes in adults with auditory deprivation. Preprint retrieved from https://doi.org/10.31219/osf.io/cnvk8CrossRefGoogle Scholar
Niedenthal, P. M., Augustinova, M., Rychlowska, M., Droit-Volet, S., Zinner, L., Knafo, A., & Brauer, M. (2012). Negative relations between pacifier use and emotional competence. Basic and Applied Social Psychology, 34(5), 387394.CrossRefGoogle Scholar
Newcombe, P. I., Campbell, C., Siakaluk, P. D., & Pexman, P. M. (2012). Effects of emotional and sensorimotor knowledge in semantic processing of concrete and abstract nouns. Frontiers in Human Neuroscience, 6, 275.CrossRefGoogle ScholarPubMed
Overby, M., Belardi, K., & Schreider, J. (2019). A retrospective video analysis of canonical babbling and volubility in infants later diagnosed with childhood apraxia of speech. International Journal of Speech-Language Pathology, 29, 118.Google Scholar
Pecher, D., Boot, I., & Van Dantzig, S. (2011). Abstract concepts: Sensory-motor grounding, metaphors, and beyond. In Psychology of learning and motivation (Vol. 54, pp. 217248). Academic Press.Google Scholar
Pezzulo, G., Barca, L., & D'Ausilio, A. (2014). The sensorimotor and social sides of the architecture of speech. Behavioral and Brain Sciences Commentary Invitation, 37(6), 569570.CrossRefGoogle Scholar
Pexman, P.M. (2017). The role of embodiment in conceptual development. Language, Cognition and Neuroscience, DOI: 10.1080/23273798.2017.1303522Google Scholar
Ponari, M., Norbury, C. F., & Vigliocco, G. (2018). Acquisition of abstract concepts is influenced by emotional valence. Developmental Science, 21(2), e12549.CrossRefGoogle ScholarPubMed
Recchia, G., & Jones, M. (2012). The semantic richness of abstract concepts. Frontiers in Human Neuroscience, 6, 315.CrossRefGoogle ScholarPubMed
Rinaldi, P., Barca, L., & Burani, C. (2004). A database for semantic, grammatical and frequency properties of the first words acquired by Italian children. Behaviour Research Methods, Instruments & Computer, 36, 525530.CrossRefGoogle ScholarPubMed
Rychlowska, M., Korb, S., Brauer, M., Droit-Volet, S., Augustinova, M., Zinner, L., & Niedenthal, P. M. (2014). Pacifiers disrupt adults’ responses to infants’ emotions. Basic and Applied Social Psychology, 36(4), 299308.CrossRefGoogle Scholar
Rowe, M.L. (2012). A longitudinal investigation of the role of quantity and quality of child-directed speech in vocabulary development. Child Development, 83, 17621774.CrossRefGoogle ScholarPubMed
Schwab, J., & Lew-Williams, C. (2007). Language learning, socioeconomic status, and child-directed speech. WIREs Cognitive Science, 7:264275.CrossRefGoogle Scholar
Terband, H., Maassen, B., Guenther, F.H., & Brumberg, J. (2009). Computational neural modeling of speech control in childhood apraxia of speech (CAS). Journal of Speech, Language and Hearing Research, 52 (6): 15951609.CrossRefGoogle Scholar
Terband, H., Maassen, B., Guenther, F. H., & Brumberg, J. (2014). Auditory–motor interactions in paediatric motor speech disorders: Neurocomputational modeling of disordered development. Journal of Communication Disorders, 47, 1733.CrossRefGoogle Scholar
Tierney, C.D., Pitterle, K., Kurtz, K., Nakhla, M., & Todorow, C. (2016). Bridging the Gap Between Speech and Language: Using Multimodal Treatment in a Child With Apraxia. Pediatrics, 138, (3):320160007.CrossRefGoogle Scholar
Wauters, L. N., Tellings, A. E., Van Bon, W. H., & Van Haaften, A.W. (2003). Mode of acquisition of words meanings: The viability of a theoretical construct. Applied Psycholinguistics, 24, 385406.CrossRefGoogle Scholar
Wauters, L. N., Tellings, A. E., Van Bon, W. H., & Mak, W. M. (2007). Mode of acquisition as a factor in deaf children's reading comprehension. Journal of Deaf Studies and Deaf Education, 13(2), 175192.CrossRefGoogle ScholarPubMed
Wellsby, M., & Pexman, P.M. (2014). The influence of bodily experience on children's language processing. Topics in Cognitive Science, 6, 425441.CrossRefGoogle ScholarPubMed
Supplementary material: File

Barca et al. supplementary material

Table S1

Download Barca et al. supplementary material(File)
File 151 KB