Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T04:38:21.579Z Has data issue: false hasContentIssue false

Valuing COVID-19 Morbidity Risk Reductions

Published online by Cambridge University Press:  03 August 2022

Lisa A. Robinson*
Affiliation:
Center for Health Decision Science, Harvard T.H. Chan School of Public Health, Boston, MA, USA Harvard Center for Risk Analysis, Harvard University, Boston, MA, USA
Michael R. Eber
Affiliation:
Center for Health Decision Science, Harvard T.H. Chan School of Public Health, Boston, MA, USA Harvard Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA
James K. Hammitt
Affiliation:
Center for Health Decision Science, Harvard T.H. Chan School of Public Health, Boston, MA, USA Harvard Center for Risk Analysis, Harvard University, Boston, MA, USA Toulouse School of Economics, Université de Toulouse Capitole, Toulouse, France
*
*Corresponding author: e-mail: robinson@hsph.harvard.edu

Abstract

Many economic analyses, including those that address the COVID-19 pandemic, focus on the value of averting deaths and do not include the value of averting nonfatal illnesses. Yet, incorporating the value of averting nonfatal cases may change conclusions about the desirability of the policy. While per case values may be small, the number of nonfatal cases is often large, far outstripping the number of fatal cases. The value of averting nonfatal cases is also increasingly important in evaluating COVID-19 policy options as vaccine- and infection-related immunity and treatments reduce the case-fatality rate. Unfortunately, little valuation research is available that explicitly addresses COVID-19 morbidity. We describe and implement an approach for approximating the value of averting nonfatal illnesses or injuries and apply it to COVID-19 in the USA. We estimate gains from averting COVID-19 morbidity of about 0.01 quality-adjusted life year (QALY) per mild case averted, 0.02 QALY per severe case, and 3.15 QALYs per critical case. These gains translate into monetary values of about $5300 per mild case, $11,000 per severe case, and $1.8 million per critical case. While these estimates are imprecise, they suggest the magnitude of the effects.

Type
Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of the Society for Benefit-Cost Analysis

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abu-Raddad, Laith J., Chemaitelly, Hiam, Ayoub, Houssein H., AlMukdad, Sawsan, Yassine, Hadi M., Al-Khatib, Hebah A., Smatti, Maria K., et al. 2022. “Effect of mRNA Vaccine Boosters against SARS-CoV-2 Omicron Infection in Qatar.” New England Journal of Medicine, 386: 18041816.Google ScholarPubMed
Arias, Elizabeth, and Xu, Jiaquan. 2020. “United States Life Tables, 2018.” National Vital Statistics Reports, 69(12): 144.Google ScholarPubMed
Avalere Health. 2020. COVID-19 Hospitalizations Projected to Cost up to $17B in US in 2020. Washington, DC: Avalere Health. https://avalere.com/insights/covid-19-hospitalizations-projected-to-cost-up-to-17b-in-us-in-2020.Google Scholar
Basu, Anirban, and Gandhay, Varun J.. 2021. “Quality-Adjusted Life-Year Losses Averted With Every COVID-19 Infection Prevented in the United States.” Value in Health, 24(5): 632640.CrossRefGoogle ScholarPubMed
Berlin, David A., Gulick, Roy M., and Martinez, Fernando J.. 2020. “Severe Covid-19.” New England Journal of Medicine, 383(25): 24512460.Google ScholarPubMed
Blair, Paul W., Brown, Diane M., Jang, Minyoung, Antar, Annukka AR, Keruly, Jeanne C., Bachu, Vismaya S., Townsend, Jennifer L. et al. 2021. “The Clinical Course of COVID-19 in the Outpatient Setting: A Prospective Cohort Study.” Open Forum Infectious Diseases, 8(2): ofab007.CrossRefGoogle ScholarPubMed
Bleichrodt, Han, Wakker, Peter, and Johannesson, Magnus. 1997. “Characterizing QALYs by Risk Neutrality.” Journal of Risk and Uncertainty, 15: 107114.CrossRefGoogle Scholar
Carfì, Angelo, Bernabei, Roberto, and Landi, Francesco. 2020. “Persistent symptoms in patients after acute COVID-19.” JAMA, 324(6): 603605.CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention. 2020. Similarities and Differences between Flu and COVID-19. Available at https://www.cdc.gov/flu/symptoms/flu-vs-covid19.htm (accessed July 9, 2020).Google Scholar
Centers for Disease Control and Prevention. 2021a. Estimated COVID-19 Burden. Available at https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/burden.html (accessed April 3, 2022).Google Scholar
Centers for Disease Control and Prevention. 2021b. Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Available at https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html (accessed April 9, 2022).Google Scholar
Centers for Disease Control and Prevention. 2021c. COVID-19 Pandemic Planning Scenarios. Available at https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html (accessed April 9, 2022).Google Scholar
Centers for Disease Control and Prevention. 2021d. Estimated COVID-19 Burden. Available at https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/burden.html#how-est-illness (accessed May 12, 2022).Google Scholar
Centers for Disease Control and Prevention. 2022. Laboratory-Confirmed COVID-19 Hosptializations. Available at https://gis.cdc.gov/grasp/covidnet/covid19_5.html (accessed April 3, 2022).Google Scholar
Chen, Chen, Haupert, Spencer R., Zimmermann, Lauren, Shi, Xu, Fritsche, Lars G., and Mukherjee, Bhramar. 2022. “Global Prevalence of Post COVID-19 Condition or Long COVID: A Meta-Analysis and Systematic Review.” The Journal of Infectious Diseases. Online ahead of print. https://doi.org/10.1093/infdis/jiac136.(accessed April 16, 2022).Google ScholarPubMed
Cuthbertson, Brian H., Roughton, Siân, Jenkinson, David, MacLennan, Graeme, and Vale, Luke. 2010. “Quality of Life in the Five Years After Intensive Care: A Cohort Study.” Critical Care, 14(1): R6.CrossRefGoogle ScholarPubMed
Davidson, Timothy A., Caldwell, Ellen S., Curtis, J. Randall, Hudson, Leonard D., and Steinberg, Kenneth P.. 1999. “Reduced Quality of Life in Survivors of Acute Respiratory Distress Syndrome Compared with Critically Ill Control Patients.” JAMA, 281(4): 354360.CrossRefGoogle ScholarPubMed
Dong, Yuanyuan, Mo, X. I., Hu, Yabin, Qi, Xin, Jiang, Fang, Jiang, Zhongyi, and Tong, Shilu. 2020. Epidemiological Characteristics of 2143 Pediatric Patients with 2019 Coronavirus Disease in China. Pediatrics. 145(6): e20200702.CrossRefGoogle Scholar
Fromer, Leonard, and Cooper, C. B.. 2008. “A Review of the GOLD Guidelines for the Diagnosis and Treatment of Patients with COPD.” International Journal of Clinical Practice, 62(8): 12191236.CrossRefGoogle ScholarPubMed
Gandhi, Rajesh T., Lynch, John B., and Del Rio, Carlos. 2020. “Mild or Moderate COVID-19.” New England Journal of Medicine, 383: 17571766.CrossRefGoogle ScholarPubMed
Hammitt, James K. 2002. “QALYs versus WTP.” Risk Analysis, 22(5): 9851001.CrossRefGoogle Scholar
Hammitt, James K. 2013. “Admissible Utility Functions for Health, Longevity, and Wealth: Integrating Monetary and Life-Year Measures.” Journal of Risk and Uncertainty, 47: 311325.CrossRefGoogle Scholar
Hammitt, James K. 2017. “Valuing Non-Fatal Health Risks: Monetary and Health-Utility Measures.” Revue Economique, 68: 335356.CrossRefGoogle Scholar
Hammitt, James K. 2020. “Valuing Mortality Risk in the Time of COVID-19.” Journal of Risk and Uncertainty, 61(2): 129154.CrossRefGoogle ScholarPubMed
Hanmer, Janel, Lawrence, William F., Anderson, John P., Kaplan, Robert M., and Fryback, Dennis G.. 2006. “Report of Nationally Representative Values for the Noninstitutionalized US Adult Population for 7 Health-Related Quality-of-Life Scores.” Medical Decision Making, 26(4): 391400.CrossRefGoogle ScholarPubMed
Helms, Julie, Kremer, Stéphane, Merdji, Hamid, Clere-Jehl, Raphaël, Schenck, Malika, Kummerlen, Christine, Collange, Olivier, et al. 2020. “Neurologic Features in Severe SARS-CoV-2 Infection.” New England Journal of Medicine, 382: 22682270.CrossRefGoogle ScholarPubMed
Herridge, M. S., Cheung, A. M., Tansey, C. M., Matte-Martyn, A., Diaz-Granados, N., Al-Saidi, F., Cooper, A. B., et al. 2003. “One-Year Outcomes in Survivors of the Acute Respiratory Distress Syndrome.” New England Journal of Medicine, 348(8): 683693.Google ScholarPubMed
Herridge, Margaret S., Cheung, Angela M., Tansey, Catherine M., Matte-Martyn, Andrea, Diaz-Granados, Natalia, Al-Saidi, Fatma, Cooper, Andrew B., et al. 2011. “Functional Disability 5 Years after Acute Respiratory Distress Syndrome.” New England Journal of Medicine, 364(14): 12931304.CrossRefGoogle ScholarPubMed
Heyland, Daren K., Guyatt, Gordon, Cook, Deborah J., Meade, Maureen, Juniper, Elizabeth, Cronin, Lisa, and Gafni, Amiram. 1998. “Frequency and Methodologic Rigor of Quality-of-Life Assessments in the Critical Care Literature.” Critical Care Medicine, 26(3): 591598.CrossRefGoogle ScholarPubMed
Huang, Chaolin, Huang, Lixue, Wang, Yeming, Li, Xia, Ren, Lili, Gu, Xiaoying, Kang, Liang, et al. 2021. “6-Month Consequences of COVID-19 in Patients Discharged from Hospital: A Cohort Study.” The Lancet, 397(10270): 220232.CrossRefGoogle ScholarPubMed
Institute of Medicine. 2006. Valuing Health for Regulatory Cost-Effectiveness Analysis. (Miller, Wilhelmine, Robinson, Lisa A., and Lawrence, Robert S., Eds.) Washington, D.C.: The National Academies Press. http://www.nap.edu/catalog.php?record_id=11534 (accessed March 15, 2021).Google Scholar
Khazeni, Nayer, Hutton, David W., Garber, Alan M., Hupert, Nathaniel, and Owens, Douglas K.. 2009. “Effectiveness and Cost-Effectiveness of Vaccination against Pandemic Influenza (H1N1) 2009.” Annals of Internal Medicine, 151(12): 829839.Google ScholarPubMed
Kniesner, Thomas J., and Sullivan, Ryan. 2020. “The Forgotten Numbers: A Closer Look at COVID-19 Non-Fatal Valuations.” Journal of Risk and Uncertainty, 61: 155176.CrossRefGoogle Scholar
Lee, Bruce Y., Bartsch, Sarah M., Brown, Shawn T., Cooley, Philip, Wheaton, William D., and Zimmerman, Richard K.. 2015. “Quantifying the Economic Value and Quality of Life Impact of Earlier Influenza Vaccination.” Medical Care, 53(3): 218.CrossRefGoogle ScholarPubMed
Lee, Yong-Hoon, Hong, Chae Moon, Kim, Dae Hyun, Lee, Taek Hoo, and Lee, Jaetae. 2020. “Clinical Course of Asymptomatic and Mildly Symptomatic Patients with Coronavirus Disease Admitted to Community Treatment Centers, South Korea.” Emerging Infectious Diseases, 26(10): 23462352.CrossRefGoogle ScholarPubMed
Longfonds. 2020. Peiling schetst schokkend beeld gezondheid thuiszittende coronapatiënten [Dutch]. Available at https://www.longfonds.nl/Peiling-schokkend-beeld-gezondheid-thuiszittende-coronapatienten (accessed July 12, 2020).Google Scholar
Lu, Xiaoxia, Zhang, Liqiong, Du, Hui, Zhang, Jingjing, Li, Yuan Y., Qu, Jingyu, Zhang, Wenxin, et al. 2020. “SARS-CoV-2 Infection in Children.” New England Journal of Medicine, 382(17): 16631665.CrossRefGoogle ScholarPubMed
Macario, Alex, Chow, John L., and Dexter, Franklin. 2006. “A Markov Computer Simulation Model of the Economics of Neuromuscular Blockade in Patients with Acute Respiratory Distress Syndrome.” BMC Medical Informatics and Decision Making, 6(1): 15.CrossRefGoogle ScholarPubMed
Meys, Roy, Delbressine, Jeannet M., Goërtz, Yvonne M. J., Vaes, Anouk W., Machado, Felipe V. C., Van Herck, Maarten, Burtin, Chris, et al. 2020. “Generic and Respiratory-Specific Quality of Life in Non-Hospitalized Patients with COVID-19.” Journal of Clinical Medicine, 9(12): 3993.CrossRefGoogle ScholarPubMed
Moreno-Pérez, Oscar, Merino, Esperanza, Leon-Ramirez, Jose-Manuel, Andres, Mariano, Ramos, Jose Manuel, Arenas-Jiménez, Juan, Asensio, Santos, et al. 2021. “Post-Acute COVID-19 Syndrome. Incidence and Risk Factors: A Mediterranean Cohort Study.” Journal of Infection, 82(3): 378383.CrossRefGoogle ScholarPubMed
Nalbandian, Ani, Sehgal, Kartik, Gupta, Aakriti, Madhavan, Mahesh V., McGroder, Claire, Stevens, Jacob S., Cook, Joshua R., et al. 2021. “Post-Acute COVID-19 Syndrome.” Nature Medicine, 27(4): 601615.CrossRefGoogle ScholarPubMed
Neumann, Peter J., Sanders, Gillian D., Russell, Louise B., Siegel, Joanna E., and Ganiats, Theodore G. (Eds.) 2016. Cost-Effectiveness in Health and Medicine (Second Edition). New York: Oxford University Press.Google Scholar
Office for National Statistics. 2020. Prevalence of Long COVID Symptoms and COVID-19 Complications. Available at https://www.ons.gov.uk/news/statementsandletters/theprevalenceoflongcovidsymptomsandcovid19complications (accessed March 15, 2021).Google Scholar
Paterson, Ross W., Brown, Rachel L., Benjamin, Laura, Nortley, Ross, Wiethoff, Sarah, Bharucha, Tehmina, Jayaseelan, Dipa L., et al. 2020. “The Emerging Spectrum of COVID-19 Neurology: Clinical, Radiological and Laboratory Findings.” Brain, 143(10): 31043120.CrossRefGoogle ScholarPubMed
Patient-Led Research for COVID-19. 2020. What Does COVID-19 Recovery Actually Look Like? An Analysis of the Prolonged COVID-19 Symptoms Survey by Patient-Led Research Team. Available at https://patientresearchcovid19.com/research/report-1/ (accessed July 12, 2020).Google Scholar
Pennington, Mark, Baker, Rachel, Brouwer, Werner, Mason, Helen, Hansen, Dorte Gyrd, Robinson, Angela, Donaldson, Cam, and Team, EuroVaQ. 2015. “Comparing WTP Values of Different Types of QALY Gain Elicited from the General Public.” Health Economics, 24: 280293.CrossRefGoogle ScholarPubMed
Pliskin, Joseph S., Shepard, Donald S., and Weinstein, Milton C.. 1980. “Utility Functions for Life Years and Health Status.” Operations Research, 28: 206224.CrossRefGoogle Scholar
Praschan, Nathan, Josephy-Hernandez, Sylvia, Kim, David Dongkyung, Kritzer, Michael D., Mukerji, Shibani, Newhouse, Amy, Pasinski, Marie, and Chemali, Zeina. 2021. “Implications of COVID-19 Sequelae for Health-care Personnel.” The Lancet Respiratory Medicine, 9(3): P230P231.CrossRefGoogle ScholarPubMed
Puntmann, Valentina O., Carerj, M. Ludovica, Wieters, Imke, Fahim, Masia, Arendt, Christophe, Hoffmann, Jedrzej, Shchendrygina, Anastasia, et al. 2020. “Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered from Coronavirus Disease 2019 (COVID-19).” JAMA Cardiology, 5(11): 12651273.CrossRefGoogle Scholar
Robinson, Lisa A., Eber, Michael R., and Hammitt, James K.. 2021a. Valuing COVID-19 Mortality and Morbidity Risk Reductions in U.S. Department of Health and Human Services Regulatory Impact Analyses. Available at https://aspe.hhs.gov/reports/valuing-covid-19-risk-reductions-hhs-rias (accessed April 14, 2022).CrossRefGoogle Scholar
Robinson, Lisa A., and Hammitt, James K.. 2016. “Valuing Reductions in Fatal Illness Risks: Implications of Recent Research.” Health Economics, 25(8): 10391052.Google ScholarPubMed
Robinson, Lisa A., Sullivan, Ryan, and Shogren, Jason F.. 2021b. “Do the Benefits of COVID‐19 Policies Exceed the costs? Exploring Uncertainties in the age–VSL Relationship.” Risk Analysis, 41(5): 761770.CrossRefGoogle Scholar
Rubino, Francesco, Amiel, Stephanie A., Zimmet, Paul, Alberti, George, Bornstein, Stefan, Eckel, Robert H., Mingrone, Geltrude, et al. 2020. “New-Onset Diabetes in Covid-19.” New England Journal of Medicine, 383: 789790.CrossRefGoogle ScholarPubMed
Ryen, Linda, and Svensson, Mikael. 2015. “The Willingness to Pay for a Quality Adjusted Life Year: A Review of the Empirical Literature.” Health Economics, 24: 12891301.CrossRefGoogle ScholarPubMed
Sivan, Manoj, and Taylor, Sharon. 2020. “NICE Guideline on Long Covid.” BMJ, 371: m4938.CrossRefGoogle ScholarPubMed
Sudre, Carole H., Murray, Benjamin, Varsavsky, Thomas, Graham, Mark S., Penfold, Rose S., Bowyer, Ruth C., Pujol, Joan Capdevila, et al. 2021. “Attributes and Predictors of Long COVID.” Nature Medicine, 27(4): 626631.CrossRefGoogle ScholarPubMed
Tenforde, Mark W., Kim, Sara S., Lindsell, Christopher J., Rose, Erica Billig, Shapiro, Nathan I., Files, D. Clark, Gibbs, Kevin W., et al. 2020. “Symptom Duration and Risk Factors for Delayed Return to Usual Health among Outpatients with COVID-19 in a Multistate Health Care Systems Network – United States, March–June 2020.” Morbidity and Mortality Weekly Report, 69(30): 993998.CrossRefGoogle Scholar
Tsai, Y., Vogt, T. M., and Zhou, F.. 2021. “Patient Characteristics and Costs Associated with COVID-19–Related Medical Care among Medicare Fee-for-service Beneficiaries.” Annals of Internal Medicine, 174(8): 11011109.CrossRefGoogle ScholarPubMed
U.S. Department of Health and Human Services. 2016. Guidelines for Regulatory Impact Analysis. Available at https://aspe.hhs.gov/pdf-report/guidelines-regulatory-impact-analysis (accessed October 17, 2021).Google Scholar
U.S. Department of Health and Human Services. 2021. Guidelines for Regulatory Impact Analysis, Appendix D: Updating Value per Statistical Life (VSL) Estimates for Inflation and Changes in Real Income. Available at https://aspe.hhs.gov/pdf-report/updating-vsl-estimates (accessed October 17, 2021).Google Scholar
U.S. Department of Transportation. 2021. Departmental Guidance: Treatment of the Value of Preventing Fatalities and Injuries in Preparing Economic Analyses. Available at https://www.transportation.gov/office-policy/transportation-policy/revised-departmental-guidance-on-valuation-of-a-statistical-life-in-economic-analysis(accessed April 14, 2022).Google Scholar
U.S. Environmental Protection Agency. 2010. Guidelines for Preparing Economic Analysis. Available at https://www.epa.gov/environmental-economics/guidelines-preparing-economic-analyses(accessed April 14, 2022).Google Scholar
Viscusi, W. Kip. 2018. “Best Estimate Selection Bias in the Value of a Statistical Life.” Journal of Benefit-Cost Analysis, 9(2): 205246.CrossRefGoogle Scholar
Viscusi, W. Kip. 2020. “Pricing the Global Health Risks of the COVID-19 Pandemic.” Journal of Risk and Uncertainty, 61: 101128.CrossRefGoogle ScholarPubMed
Wiersinga, W. Joost, Rhodes, Andrew, Cheng, Allen C., Peacock, Sharon J., and Prescott, Hallie C.. 2020. “Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review.” JAMA, 324(8): 782793.CrossRefGoogle ScholarPubMed
World Health Organization. 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19), Geneva, Switzerland. Available at https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf (accessed July 14, 2022).Google Scholar
Wu, D., Chaiyakunapruk, N., Pratoomsoot, C., Lee, K., Chong, H., Nelson, R., Smith, P. F., et al. 2018. “Cost-Utility Analysis of Antiviral Use under Pandemic Influenza using a Novel Approach–Linking Pharmacology, Epidemiology and Heath Economics.” Epidemiology & Infection, 146(4): 496507.CrossRefGoogle ScholarPubMed
Wu, Zunyou, and McGoogan, Jennifer M.. 2020. “Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases from the Chinese Center for Disease Control and Prevention.” JAMA, 323(13): 12391242.CrossRefGoogle Scholar
Supplementary material: PDF

Robinson et al. supplementary material

Robinson et al. supplementary material

Download Robinson et al. supplementary material(PDF)
PDF 200 KB