Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-22T22:43:52.894Z Has data issue: false hasContentIssue false

Preservation of positive and negative orthant dependence concepts under mixtures and applications

Published online by Cambridge University Press:  14 July 2016

Félix Belzunce*
Affiliation:
Universidad de Murcia
Patrizia Semeraro*
Affiliation:
Università di Torino
*
Postal address: Departamento de Estadística e Investigación Operativa, Universidad de Murcia, 30100 Espinardo, Murcia, Spain. Email address: belzunce@um.es
∗∗ Postal address: Dipartimento di Matematica, Università di Torino, via Carlo Alberto 10, 10123 Torino, Italy. Email address: semeraro@dm.unito.it

Abstract

In this paper we consider some dependence properties and orders among multivariate distributions, and we study their preservation under mixtures. Applications of these results in reliability, risk theory, and mixtures of discrete distributions are provided.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 2004 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balu, M. N., and Sabnis, S. V. (1997). Preservation of certain dependent structures under bivariate homogeneous Poisson shock models. Statist. Prob. Lett. 35, 91100.CrossRefGoogle Scholar
Belzunce, F., Lillo, R. E., Pellerey, F., and Shaked, M. (2002). Preservation of association in multivariate shock and claim models. Operat. Res. Lett. 30, 223230.CrossRefGoogle Scholar
Block, H. W., Savits, T. H., and Shaked, M. (1982). Some concepts of negative dependence. Ann. Prob. 10, 765772.CrossRefGoogle Scholar
Brown, M., and Proschan, F. (1983). Imperfect repair. J. Appl. Prob. 20, 851859.CrossRefGoogle Scholar
Denuit, M., Genest, C., and Marceau, E. (2002). Criteria for the stochastic ordering of random sums, with actuarial applications. Scand. Actuarial J., 316.CrossRefGoogle Scholar
Hu, T., and Pan, X. (1999). Preservation of multivariate dependence under multivariate claims models. Insurance Math. Econom. 25, 171179.CrossRefGoogle Scholar
Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman and Hall, London.Google Scholar
Jogdeo, K. (1978). On a probability bound of Marshall and Olkin. Ann. Statist. 6, 232234.CrossRefGoogle Scholar
Khaledhi, B.-E., and Kochar, S. C. (2001). Dependence properties of multivariate mixture distributions and their applications. Ann. Inst. Statist. Math. 53, 620630.CrossRefGoogle Scholar
Kimeldorf, G., and Sampson, A. R. (1987). Positive dependence orderings. Ann. Inst. Statist. Math. 39, 113128.CrossRefGoogle Scholar
Kimeldorf, G., and Sampson, A. R. (1989). A framework for positive dependence. Ann. Inst. Statist. Math. 41, 3145.CrossRefGoogle Scholar
Lillo, R., and Semeraro, P. (2004). Stochastic bounds for discrete-time claim processes with correlated risks. Scand. Actuarial J., 113.CrossRefGoogle Scholar
Lillo, R., Pellerey, F., Semeraro, P., and Shaked, M. (2003). On the preservation of the supermodular order under multivariate claim models. Ricerche di Mat. 52, 7381.Google Scholar
Lim, J.-H., Lu, K.-L., and Park, D.-H. (1998). Bayesian imperfect repair model. Commun. Statist. Theory Meth. 27, 965984.CrossRefGoogle Scholar
Lindqvist, B. H. (1988). Association of probability measures on partially ordered spaces. J. Multivariate Anal. 26, 111132.CrossRefGoogle Scholar
Ma, C. (1999). Uniform stochastic ordering on a system of components with dependent lifetimes induced by a common environment. Sankhya 61, 218228.Google Scholar
Müller, A., and Scarsini, M. (2001). Stochastic comparison of random vectors with a common copula. Math. Operat. Res. 26, 723740.CrossRefGoogle Scholar
Oakes, D. (1989). Bivariate survival models induced by frailties. J. Amer. Statist. Assoc. 84, 487493.CrossRefGoogle Scholar
Pellerey, F. (1999). Stochastic comparisons for multivariate shock models. J. Multivariate Anal. 71, 4255.CrossRefGoogle Scholar
Scarsini, M., and Shaked, M. (1996). Positive dependence orders: a survey. In Athens Conference on Applied Probability and Time Series Analysis (Lecture Notes Statist. 114), Springer, New York, pp. 7091.CrossRefGoogle Scholar
Scarsini, M., and Spizzichino, F. (1999). Simpson-type paradoxes, dependence and ageing. J. Appl. Prob. 36, 119131.CrossRefGoogle Scholar
Shaked, M., and Shanthikumar, J. G. (1994). Stochastic Orders and Their Applications. Academic Press, Boston, MA.Google Scholar
Shaked, M., and Spizzichino, F. (1998). Positive dependence properties of conditionally independent random lifetimes. Math. Operat. Res. 23, 944959.CrossRefGoogle Scholar
Wong, T. (1997). Preservation of multivariate stochastic orders under multivariate Poisson shock models. J. Appl. Prob. 34, 10091020.CrossRefGoogle Scholar