Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T07:35:00.939Z Has data issue: false hasContentIssue false

A note on the polynomial ergodicity of the one-dimensional Zig-Zag process

Published online by Cambridge University Press:  18 July 2022

Giorgos Vasdekis*
Affiliation:
University of Warwick
Gareth O. Roberts*
Affiliation:
University of Warwick
*
*Postal address: Department of Statistics, University of Warwick, Coventry, CV4 7AL, UK.
*Postal address: Department of Statistics, University of Warwick, Coventry, CV4 7AL, UK.

Abstract

We prove polynomial ergodicity for the one-dimensional Zig-Zag process on heavy-tailed targets and identify the exact order of polynomial convergence of the process when targeting Student distributions.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrieu, C., Dobson, P. and Wang, A. Q. (2021). Subgeometric hypocoercivity for piecewise-deterministic Markov process Monte Carlo methods. Electron. J. Prob. 26, 126.10.1214/21-EJP643CrossRefGoogle Scholar
Andrieu, C., Durmus, A., Nüsken, N. and Roussel, J. (2021). Hypocoercivity of piecewise deterministic Markov Process-Monte Carlo. Ann. Appl. Prob. 31, 24782517.10.1214/20-AAP1653CrossRefGoogle Scholar
Bakry, D., Cattiaux, P. and Guillin, A. (2008). Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré. J. Funct. Anal. 254, 727759.10.1016/j.jfa.2007.11.002CrossRefGoogle Scholar
Bierkens, J. and Duncan, A. (2017). Limit theorems for the zig-zag process. Adv. Appl. Prob. 49, 791825.10.1017/apr.2017.22CrossRefGoogle Scholar
Bierkens, J. and Roberts, G. O. (2017). A piecewise deterministic scaling limit of lifted Metropolis–Hastings in the Curie–Weiss model. Ann. Appl. Prob. 27, 846882.10.1214/16-AAP1217CrossRefGoogle Scholar
Bierkens, J. and Verduyn Lunel, S. M. (2022). Spectral analysis of the zigzag process. Ann. Inst. H. Poincaré Prob. Statist. 58, 827860.10.1214/21-AIHP1188CrossRefGoogle Scholar
Bierkens, J., Fearnhead, P. and Roberts, G. O. (2019). The Zig-Zag process and super-efficient sampling for Bayesian analysis of big data. Ann. Statist. 47, 12881320.10.1214/18-AOS1715CrossRefGoogle Scholar
Bierkens, J., Kamatani, K. and Roberts, G. (2018). High-dimensional scaling limits of piecewise deterministic sampling algorithms. Available at arXiv:1807.11358.Google Scholar
Bierkens, J., Nyquist, P. and Schlottke, M. C. (2021). Large deviations for the empirical measure of the zig-zag process. Ann. Appl. Prob. 31, 28112843.10.1214/21-AAP1663CrossRefGoogle Scholar
Bierkens, J., Roberts, G. O. and Zitt, P. A. (2019). Ergodicity of the zigzag process. Ann. Appl. Prob. 29, 22662301.10.1214/18-AAP1453CrossRefGoogle Scholar
Davis, M. (2018). Markov Models and Optimization (Chapman and Hall/CRC Monographs on Statistics and Applied Probability). Routledge.10.1201/9780203748039CrossRefGoogle Scholar
Diaconis, P., Holmes, S. and Neal, R. M. (2000). Analysis of a nonreversible Markov chain sampler. Ann. Appl. Prob. 10, 726752.10.1214/aoap/1019487508CrossRefGoogle Scholar
Douc, R., Fort, G. and Guillin, A. (2009). Subgeometric rates of convergence of f-ergodic strong Markov processes. Stoch. Process. Appl. 119, 897923.10.1016/j.spa.2008.03.007CrossRefGoogle Scholar
Fearnhead, P., Bierkens, J., Pollock, M. and Roberts, G. O. (2018). Piecewise deterministic Markov processes for continuous-time Monte Carlo. Statist. Sci. 33, 386412.10.1214/18-STS648CrossRefGoogle Scholar
Fort, G. and Roberts, G. O. (2005). Subgeometric ergodicity of strong Markov processes. Ann. Appl. Prob. 15, 15651589.10.1214/105051605000000115CrossRefGoogle Scholar
Hairer, M. (2016). Convergence of Markov Processes. Unpublished lecture notes, available at http://www.hairer.org/Teaching.html.Google Scholar
Jarner, S. and Roberts, G. O. (2007). Convergence of heavy-tailed Monte Carlo Markov chain algorithms. Scand. J. Statist. 34, 781815.Google Scholar
Jarner, S. F. and Tweedie, R. L. (2003). Necessary conditions for geometric and polynomial ergodicity of random-walk-type. Bernoulli 9, 559578.10.3150/bj/1066223269CrossRefGoogle Scholar
Levin, D., Luczak, M. and Peres, Y. (2007). Glauber dynamics for the mean-field Ising model: cut-off, critical power law, and metastability. Prob. Theory Related Fields 146, 223265.10.1007/s00440-008-0189-zCrossRefGoogle Scholar
Meyn, S. P. and Tweedie, R. L. (1993). Stability of Markovian processes II: Continuous-time processes and sampled chains. Adv. Appl. Prob. 25, 487517.10.2307/1427521CrossRefGoogle Scholar
Turitsyn, K. S., Chertkov, M. and Vucelja, M. (2011). Irreversible Monte Carlo algorithms for efficient sampling. Physica D 240, 410414.10.1016/j.physd.2010.10.003CrossRefGoogle Scholar
Vanetti, P., Bouchard-Côté, A., Deligiannidis, G. and Doucet, A. (2017). Piecewise-deterministic Markov chain Monte Carlo. Available at arXiv:1707.05296.Google Scholar
Vasdekis, G. and Roberts, G. O. (2021). Speed up zig-zag. Available at arXiv:2103.16620.Google Scholar