Skip to main content Accessibility help
×
Home
Hostname: page-component-8bbf57454-hr8xl Total loading time: 0.248 Render date: 2022-01-24T18:29:45.151Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

A New Look at Urban Water Storage in a Series of Connected Dams

Published online by Cambridge University Press:  30 January 2018

Phil Howlett*
Affiliation:
University of South Australia
Charles Pearce*
Affiliation:
University of Adelaide
Julia Piantadosi*
Affiliation:
University of South Australia
*
Postal address: Scheduling and Control Group, Centre for Industrial and Applied Mathematics, University of South Australia, Mawson Lakes, 5095, Australia.
∗∗ Postal address: School of Mathematical Sciences, University of Adelaide, Adelaide, 5000, Australia.
Postal address: Scheduling and Control Group, Centre for Industrial and Applied Mathematics, University of South Australia, Mawson Lakes, 5095, Australia.
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We propose a discrete state-space model for storage of urban stormwater in two connected dams using an optimal pump-to-fill policy to transfer water from the capture dam to the holding dam. We assume stochastic supply to the capture dam and independent stochastic demand from the holding dam. We find new analytic formulae to calculate steady-state probabilities for the contents of each dam and thereby enable operators to better understand system behaviour. We illustrate our methods by considering some particular examples and discuss extension of our analysis to a series of three connected dams.

Type
Research Article
Copyright
© Applied Probability Trust 

References

Archibald, T. W., McKinnon, K. I. M. and Thomas, L. C. (1997). An aggregate stochastic dynamic programming model of multireservoir systems. Water Resources Res. 33, 333340.CrossRefGoogle Scholar
Archibald, T. W., McKinnon, K. I. M. and Thomas, L. C. (2006). Modeling the operation of multireservoir systems using decomposition and stochastic dynamic programming. Naval Res. Logistics 53, 217225.CrossRefGoogle Scholar
Archibald, T. W., Buchanan, C. S., Thomas, L. C. and McKinnon, K. I. M. (2001). Controlling multi-reservoir systems. Europ. J. Operat. Res. 129, 619626.CrossRefGoogle Scholar
Cohen, M. J. and Brown, M. T. (2007). A model examining hierarchical wetland networks for watershed stormwater management. Ecological Modelling 201, 179193.CrossRefGoogle Scholar
Gani, J. (1969). Recent advances in storage and flooding theory. Adv. Appl. Prob. 1, 90110.CrossRefGoogle Scholar
Gaver, D. P., Jacobs, P. A. and Latouche, G. (1984). Finite birth-and-death models in randomly changing environments. Adv. Appl. Prob. 16, 715731.CrossRefGoogle Scholar
Howlett, P. and Piantadosi, J. (2009). An application of the pump-to-fill policy for management of urban stormwater. Environ. Modeling Assessment 14, 195207.CrossRefGoogle Scholar
Latouche, G. and Ramaswami, V. (1999). Introduction to Matrix Analytic Methods in Stochastic Modeling. Society for Industrial and Applied Mathematics, Philadelphia, PA.CrossRefGoogle Scholar
Latouche, G., Jacobs, P. A. and Gaver, D. P. (1984). Finite Markov chain models skip-free in one direction. Naval Res. Logistics Quart. 31, 571588.CrossRefGoogle Scholar
Moran, P. A. P. (1954). A probability theory of dams and storage systems. Austral. J. Appl. Sci. 5, 116124.Google Scholar
Moran, P. A. P. (1959). The Theory of Storage. Methuen, London.Google Scholar
Neuts, M. F. (1981). Matrix-Geometric Solutions in Stochastic Models. An Algorithmic Approach. Johns Hopkins University Press, Baltimore, MD.Google Scholar
Neuts, M. F. (1989). Structured Stochastic Matrices of M/G/1 Type and Their Applications. Marcel Dekker, New York.Google Scholar
Pearce, C. E. (2009). Optimal stormwater management with two dams: the dynamics of the pump-to-fill policy. Optimization 58, 181192.CrossRefGoogle Scholar
Pearce, C. E. M., Piantadosi, J. and Howlett, P. G. (2007). On an optimal control policy for stormwater management in two connected dams. J. Industrial Manag. Optimization 3, 313320.Google Scholar
Piantadosi, J. (2004). Optimal policies for storage of urban stormwater. , University of South Australia. Available at http://arrow.unisa.edu.au:8081/1959.8/82105.Google Scholar
Piantadosi, J., Howlett, P. G., Bean, N. G. and Beecham, S. (2010). Modelling systems of reservoirs using structured Markov chains. Proc. Inst. Civ. Eng. Water Manag. 163, 407416.CrossRefGoogle Scholar
Rosenberg, K., Boland, J. and Howlett, P. G. (2004). Simulation of monthly rainfall totals. ANZIAM J. 46, E85E104.CrossRefGoogle Scholar
Thomas, P., Howlett, P. G. and Piantadosi, J. (2010). Investigating the optimal management of the Helps Road drain urban stormwater harvesting system within the city of Salisbury. Europ. Water 29, 1119.Google Scholar
Yeo, G. F. (1974). A finite dam with exponential release. J. Appl. Prob. 11, 122133.CrossRefGoogle Scholar
Yeo, G. F. (1975). A finite dam with variable release rate. J. Appl. Prob. 12, 205211.CrossRefGoogle Scholar
You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A New Look at Urban Water Storage in a Series of Connected Dams
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A New Look at Urban Water Storage in a Series of Connected Dams
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A New Look at Urban Water Storage in a Series of Connected Dams
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *