Skip to main content Accessibility help
×
Home
Hostname: page-component-5cfd469876-9knjr Total loading time: 0.229 Render date: 2021-06-24T09:05:37.596Z Has data issue: false Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Networks of non-homogeneous M/G/∞ systems

Published online by Cambridge University Press:  14 July 2016

Abstract

For a network of G/∞ service facilities, the transient joint distribution of the facility populations is shown by new simple methods to have a simple Poisson product form with simple explicit formulas for the means. In the network it is assumed that: (a) each facility has an infinite number of servers; (b) the service time distributions are general; (c) external traffic is non-homogeneous in time; (d) arrivals have random or deterministic routes through the network possibly returning to the same facility more than once; (e) arrivals use the facilities on their route sequentially or in parallel (as in the case of a circuitswitched telecommunication network). The results have relevance to communication networks and manufacturing systems.

MSC classification

Type
Part 3 Queueing Theory
Copyright
Copyright © Applied Probability Trust 1994 

Access options

Get access to the full version of this content by using one of the access options below.

References

Baskett, F., Chandy, M., Muntz, R. and Palacios, J. (1975) Open, closed and mixed networks and queues with different classes of customers. J. Assoc. Comput. Mach. 22, 248260.CrossRefGoogle Scholar
Brown, M. and Ross, S. (1969) Some results for infinite server Poisson queues. J. Appl. Prob. 6, 604611.CrossRefGoogle Scholar
Eick, S. G., Massey, W. A. and Whitt, W. (1993) The physics of the Mt/G/8 queue. Operat. Res. 41, 731742.CrossRefGoogle Scholar
Foley, R. D. (1982) The non-homogeneous M/G/8 queue. Opsearch 19, 4048.Google Scholar
Harrison, J. M. and Lemoine, A. J. (1981) A note on networks of infinite server queues. J. Appl. Prob. 18, 561567.CrossRefGoogle Scholar
Jagerman, D. L. (1984) Methods in traffic calculations. AT & T Bell Lab. Tech. J. 63, 12831303.CrossRefGoogle Scholar
Keilson, J. and Servi, L. D. (1989) Networks of non-homogeneous M/G/8 systems. GTE Technical Report.Google Scholar
Keilson, J. and Steutel, F. W. (1974) Mixtures of distributions, moment inequalities and measures of exponentiality and normality. Ann. Prob. 2, 112130.CrossRefGoogle Scholar
Kelly, F. P. (1979) Reversibility and Stochastic Networks. Wiley, New York.Google Scholar
Khintchine, A. Y. (1955) Mathematical methods in the theory of queueing (in Russian). Trudy Math. Inst. Steklov 49 (English translation published by Charles Griffin and Co. London, 1960).Google Scholar
Massey, W. A. and Whitt, W. (1993a) A probabilistic generalization of Taylor's theorem. Statist. Prob. Letters. 16, 5154.CrossRefGoogle Scholar
Massey, W. A. and Whitt, W. (1993b) Networks of infinite-server queues with non-stationary Poisson input. QUESTA. 13, 183250.Google Scholar
Massey, W. A. and Whitt, W. (1993C) Stationary-process approximations for the non-stationary Erlang loss model. Operat. Res. To appear.Google Scholar
Palm, C. (1943) Intensity variations in telephone traffic (in German). Ericsson Technics 44, 1189 (English translation published by North-Holland, 1988).Google Scholar
Prekopa, A. (1958) On secondary processes generated by a random point distribution of Poisson type. Ann. Univ. Sci. Budapest de Eötvös Nom. Sectio Math. 1, 153170.Google Scholar
Ramakrishnan, C. S. (1980) A note on the M/D/8 queue. Opsearch 17, 118.Google Scholar
Renyi, A. (1967) Remarks on the Poisson process. Studia Sci. Math. Hungar. 2, 119123.Google Scholar
Serfozo, R. (1990) In Operations Research and Management Science , Vol. 2 Stochastic Models , ed. Heyman, D. P. and Sobel, M. J., North-Holland, Amsterdam.Google Scholar
Takács, L. (1954) On secondary processes generated by a Poisson process and their applications in physics. Acta. Math. Acad. Sci. Hungar. 5, 203236.CrossRefGoogle Scholar
Takács, L. (1957) On secondary stochastic processes generated by a multidimensional Poisson process. Magyar Tudományos Akad. Mat. Kutató Intézetének Közleményei 2, 7180.Google Scholar
9
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Networks of non-homogeneous M/G/∞ systems
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Networks of non-homogeneous M/G/∞ systems
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Networks of non-homogeneous M/G/∞ systems
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *