Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-25T01:37:20.868Z Has data issue: false hasContentIssue false

Response of white clover genotypes to intergenotypic and interspecific interference

Published online by Cambridge University Press:  01 June 1997

P. ANNICCHIARICO
Affiliation:
Istituto Sperimentale per le Colture Foraggere, 29 viale Piacenza, I-20075 Lodi (MI), Italy
E. PIANO
Affiliation:
Istituto Sperimentale per le Colture Foraggere, 29 viale Piacenza, I-20075 Lodi (MI), Italy

Abstract

Six white clover genotypes that were easily distinguishable from each other on the basis of leaf lamina marks and morphology were grown at Lodi, Italy, during 1990 and 1991 in dense swards, under field conditions and a mowing regime, as (i) pure stands, (ii) a complex mixture of all genotypes, (iii) binary mixtures of each genotype with each of two ryegrass varieties, and (iv) complex mixtures of all clover genotypes in binary association with each grass variety. The grass components were of known, different vigour. The study assessed both intergenotypic and interspecific interference and related dry matter yield responses to morpho-physiological traits of the clovers, and also determined whether a high level of morpho-physiological heterogeneity conferred a yield advantage on clover populations.

Greater heterogeneity (i.e. a complex mixture of clover genotypes) did not produce higher clover yields either in the presence or absence of interspecific interference from grass; thus, the use of blends of varieties or the development of varieties with a fairly high degree of heterogeneity was not recommended for short-term meadows in environments with relatively low spatial and temporal variability. Interactions for yield occurred between clover genotypes and the presence or absence of intergenotypic interference (P<0·001), and between clover genotypes and the presence or absence of interspecific interference from the grass variety characterized by greater vigour and aggressiveness (P<0·01). The variance of the former interaction tended to be consistently larger than that of the latter interaction, indicating that competitive effects were greater between clovers than between the clover and grass components. A lower Spring [ratio ] Summer yield ratio and taller canopy tended to confer a competitive advantage under intergenotypic interference. Relatively better performance under interspecific interference was related to higher stolon density, suggesting that selection for this trait may increase the general ecological compatibility of large-leaved white clover types grown with vigorous grass companions.

Type
Research Article
Copyright
© 1997 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)