Hostname: page-component-788cddb947-tr9hg Total loading time: 0 Render date: 2024-10-15T03:34:56.633Z Has data issue: false hasContentIssue false

Influence of Sesbania mosaic virus infection on nodulation and nitrogen fixation in pea (Pisum sativum L.)

Published online by Cambridge University Press:  27 March 2009

G. P. Rao
Affiliation:
Plant Virus Laboratory, Department of Botany, University of Gorakhpur, Gorakhpur – 273 009, U.P., India
K. Shukla
Affiliation:
Plant Virus Laboratory, Department of Botany, University of Gorakhpur, Gorakhpur – 273 009, U.P., India

Extract

Previous attempts to study the effect of virus infection on nitrogen-fixing ability of some legumes (Tu, Ford & Grau, 1970; Singh & Mall, 1974; Gupta & Joshi, 1976; Tu & Holmes, 1980) concentrated mainly on the effect of virus infection on the extent of nodulation or on the amount of nitrogen fixed by diseased plants or both. The effect of virus infection on the bacterial population and the physiological status of virus-infected nodules has received little attention.

Type
Short Notes
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bisseling, T., Bos, R. U. V. D. & Kammen, A. V. (1978). The effect of ammonium nitrate on the synthesis of nitrogenase and the concentration of leghaemoglobin in pea root nodules induced by Rhizobium legumirwsarum. Biochimica et Biophysica Acta 5391, 317320.Google Scholar
Clark, F. M. & Halvorson, H. O. (1964). Laboratory Outline-General Bacteriology, p. 26. Minnesota: Burgers.Google Scholar
Commoner, B., Yamada, M., Redenberg, S. D., Wang, T. V. & Baslbr, E. J. (1953). The protein synthesized in the tissue infected with tobacco mosaic virus. Science 118, 529534.CrossRefGoogle ScholarPubMed
Dadarwal, K. R., Grover, R. & Tauro, P. (1982). Uptake hydrogenase in Rhizobium and nodule leghaemo-globin in cowpea- miscellary hosts. Archives of Microbiology 133, 303306.CrossRefGoogle Scholar
Doneen, L. D. (1932). A micro method for nitrogen in plant materials. Plant Physiology 7, 717720.CrossRefGoogle Scholar
Ford, R. E. & Tu, J. C. (1969). Free amino acid contents in corn infected with maize dwarf mosaic virus and sugarcane mosaic virus. Phytopathology 59, 179182.Google Scholar
Gupta, U. P. & Joshi, R. D. (1976). Influence of mosaic on the nitrogen fixing efficiency of root nodules in soybean. Fertilizer Technology 13, 316318.Google Scholar
Heumann, W. (1952). Uber das Abhängigkeitsverhaltnis zwischen Hämoglobin-, Stärke-, Bakteroidvorkommen und Stickstoffbindung in den Wurzelknöllchen der Erbse. Naturwissenschaften 39, 6667.Google Scholar
Humphries, E. C. (1956). Mineral components and ash analysis. In Modern Methods of Plant Analysis (ed. Peach, K. and Trachey, M. V.), pp. 468502. Berlin: Springer Verlag.Google Scholar
Joshi, H. U. & Carr, A. J. H. (1967). Effect of clover phyllody virus on nodulation of white clover (Trifolium repens) by Rhizobium trifolii in soil. Journal of General Microbiology 49, 385392.CrossRefGoogle Scholar
Matthews, R. E. F. (1970). Plant Virology, 778 pp. London: Academic Press.Google Scholar
Misra, R. (1968). Ecology Work Book. New Delhi: Oxford and IBH.Google Scholar
Singh, R. & Mall, T. P. (1974). Studies on the inoculation and nitrogen fixation by virus infected leguminous plants. I. Effect of arhar mosaic virus on nodulation and nitrogen fixation of some pulse crops. Plant and Soil 41, 279286.CrossRefGoogle Scholar
Singh, R. & Srivastava, A. K. (1985). A new sap transmissible virus of Dhaincha (Sesbania sesban (L.) Merr.). Indian Journal of Virology 1, 187196.Google Scholar
Smith, S. H., McCall, S. R. & Harris, J. H. (1968). Auxin transport in curly top virus infected tomato. Phytopathology 58, 16691670.Google Scholar
Srivastava, H. S. (1974). In vivo activity of nitrate reductase in maize seedlings. Indian Journal of Biochemistry and Biophysics 11, 230232.Google ScholarPubMed
Srivastava, R. C., Mukerji, D. & Mathur, S. N. (1980). A freeze thaw technique for estimation of nitrogenase activity in detached nodules of Vigna mungo. Annals of Applied Biology 96, 235241.CrossRefGoogle Scholar
Stroganov, N. S. (1964). Methods for ammonia determination used in studies on fish metabolism. In Techniques for investigation of fish physiology (ed. Povlovski, E. N.), Israel Programme for Scientific Translocation, Jeru-salem.Google Scholar
Travis, R. L. & Key, J. L. (1971). Correlation between polyribosome level and the ability to induce nitrate reductase in dark grown corn seedlings. Plant Physiology 48, 617620.CrossRefGoogle ScholarPubMed
Tu, J. C., Ford, R. E. & Grau, C. R. (1970). Some factors affecting the nodulation and nodule efficiency in soybeans infected by soybean mosaic virus. Phytopathology 60, 16531656.CrossRefGoogle Scholar
Tu, J. C., Ford, R. E. & Quiniones, S. S. (1970). Effects of soybean mosaic virus and/or bean pod mottle virus infection on soybean nodulation. Phytopathology 60, 518523.Google Scholar
Tu, J. C. & Holmes, T. M. (1980). Effect of alfalfa mosaic virus infection on nodulation forage yield, forage protein and over wintering of alfalfa. Phytopathologische Zeit-schrift 97, 19.CrossRefGoogle Scholar
Yemm, E. W. & Cocking, E. C. (1955). The determination of amino acids with ninhydrin. Analyst 80, 209213CrossRefGoogle Scholar