Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-08T07:30:40.392Z Has data issue: false hasContentIssue false

Genetic effects on fitness of the mutant sugary1 in wild-type maize

Published online by Cambridge University Press:  16 August 2011

A. DJEMEL
Affiliation:
Misión Biológica de Galicia (CSIC), Apdo. 28, Pontevedra, E-36080, Spain
B. ORDÁS
Affiliation:
Misión Biológica de Galicia (CSIC), Apdo. 28, Pontevedra, E-36080, Spain
L. KHELIFI
Affiliation:
École Nationale Supérieure Agronomique, Avenue Pasteur, Hassan Badi, El Harrach-Alger 16000, Algeria
A. ORDÁS
Affiliation:
Misión Biológica de Galicia (CSIC), Apdo. 28, Pontevedra, E-36080, Spain
P. REVILLA*
Affiliation:
Misión Biológica de Galicia (CSIC), Apdo. 28, Pontevedra, E-36080, Spain
*
*To whom all correspondence should be addressed. Email: previlla@mbg.cesga.es

Summary

Knowing the genetic regulation of fitness is crucial for using mutants in breeding programmes, particularly when the mutant is deleterious in some genetic backgrounds, as it happens with the sweet corn mutant sugary1 (su1) in maize (Zea mays L.). The fitness and genetic effects of maize mutant su1 were monitored through five successive selfing generations in two separated mean-generation designs. The first involved two inbreds with similar genetic backgrounds, while unrelated inbreds were used for the second design. Parents, F1s, F2s, and backcrosses were crossed to P39 as the donor of su1 and the 12 crosses were successively self-pollinated for 5 years. The su1 frequency decreased linearly across selfing generations in both designs. Additive effects were significant for su1 seed viability. However, dominance effects were of higher magnitude than additive effects, even though the dominance effects were not significant. Genetic effects depended on genotypes and environments. Therefore, the fitness of su1 is under genetic control, with significant additive effects due to minor contributions of multiple genes. The fitness of su1 is strongly affected by maize genotypic background and environment. It is hypothesized that genotypes could have evolutionary potential for modulating the fitness of single mutations.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alonso Ferro, R. C., Malvar, R. A., Revilla, P., Ordás, A., Castro, P. & Moreno-Gonzalez, J. (2008). Genetics of quality and agronomic traits in hard endosperm maize. Journal of Agricultural Science, Cambridge 146, 551560.Google Scholar
Butler, J. (1977). Viability estimates for sixty tomato mutants. Canadian Journal of Genetics and Cytology 19, 3138.Google Scholar
Cartea, M. E., Malvar, R. A., Revilla, P. & Ordás, A. (1996 a). Identification of field corn populations to improve sweet corn for Atlantic European conditions. Crop Science 36, 15061512.Google Scholar
Cartea, M. E., Malvar, R. A., Revilla, P. & Ordás, A. (1996 b). Improvement of early vigor and adaptation of sweet corn to the European Atlantic coast with open-pollinated field corn populations. Maydica 41, 119125.Google Scholar
Ceccarelli, S., Grando, S., Maatougui, M., Michael, M., Slash, M., Haghparast, R., Rahmanian, A., Taheri, A., Al-Yassin, A., Benbelkacem, A., Labdi, M., Mimoun, H. & Nachit, M. (2010). Plant breeding and climate changes. Journal of Agricultural Science, Cambridge 148, 627637.CrossRefGoogle Scholar
Cisneros-López, M. E., Mendoza-Onofre, L. E., Zavaleta-Mancera, H. A., Gonzalez-Hernandez, V. A., Mora-Aguilera, G., Cordova-Tellez, L. & Hernandez-Martinez, M. (2010). Pollen-pistil interaction, pistil histology and seed production in A×B grain sorghum crosses under chilling field temperatures. Journal of Agricultural Science, Cambridge 148, 7382.CrossRefGoogle Scholar
Falconer, D. S. (1981). Introduction to Quantitative Genetics, 2nd edn. New York: Longman Inc.Google Scholar
Haber, E. S. (1954). Dent, flint, flour, and waxy maize for the improvement of sweet corn inbreds. Proceeding of the American Society of Horticultural Science 46, 293294.Google Scholar
James, M. G., Denyer, K. & Myers, A. M. (2003). Starch synthesis in the cereal endosperm. Current Opinion in Plant Biology 6, 215222.Google Scholar
Kearsey, J. M. & Pooni, H. S. (1996). Genetical Analysis of Quantitative Traits. UK: Chapman & Hall.Google Scholar
Le Gac, M. & Doebeli, M. (2010). Epistasis and frequency dependence influence the fitness of an adaptative mutation in a diversifying lineage. Molecular Ecology 19, 24302438.Google Scholar
Magwire, M. M., Yamamoto, A., Carbone, M. A., Roshina, N. V., Symonenko, A. V., Pasyukova, E. G., Morozova, T. V. & Mackay, T. F. C. (2010). Quantitative and molecular genetic analyses of mutations increasing drosophila life span. PLoS Genetics 6(7), e1001037. doi:10.1371/journal.pgen.1001037.Google Scholar
Malvar, R. A., Cartea, M. E., Revilla, P. & Ordás, A. (1997 a). Identification of field corn inbreds adapted to Europe to improve agronomic performance of sweet corn hybrids. Crop Science 37, 11341141.CrossRefGoogle Scholar
Malvar, R. A., Revilla, P., Cartea, M. E. & Ordás, A. (1997 b). Field corn inbreds to improve sweet corn hybrids for early vigor and adaptation to European conditions. Maydica 42, 247255.Google Scholar
Martins, M. E. Q. P. & Da Silva, W. J. (1998). Genic and genotypic frequencies of endosperm mutants in maize populations under natural selection. Journal of Heredity 89, 516524.Google Scholar
Mather, K. & Jinks, J. L. (1971). Biometrical Genetics. The Study of Continuous Variation, 2nd edn. New York: Cornell University Press.CrossRefGoogle Scholar
Mather, K. & Jinks, J. L. (1982). Biometrical Genetics, 3rd edn. New York: Chapman & Hall.Google Scholar
Ordás, B., Rodríguez, V. M., Romay, M. C., Malvar, R. A., Ordás, A. & Revilla, P. (2010). Adaptation of super-sweet maize to cold conditions: mutant×genotype interaction. Journal of Agricultural Science, Cambridge 148, 401405.Google Scholar
Rahman, A., Wong, K. S., Jane, J., Myers, A. M. & James, M. G. (1998). Characterization of Su1 isoamylase, a determinant of storage starch structure in maize. Plant Physiology 117, 425435.Google Scholar
Raymond, B., Wright, D. J. & Bonsall, M. B. (2011). Effects of host plant and genetic background on the fitness costs of resistance to Bacillus thuringiensis . Heredity 106, 281288.CrossRefGoogle ScholarPubMed
Revilla, P. & Tracy, W. F. (1997). Heterotic patterns among open-pollinated sweet corn cultivars. Journal of American Society for Horticultural Science 122, 319324.CrossRefGoogle Scholar
Revilla, P., Malvar, R. A., Cartea, M. E. & Ordás, A. (1998). Identifying open-pollinated populations of field corn as sources of cold tolerance for improving sweet corn. Euphytica 101, 239247.CrossRefGoogle Scholar
Revilla, P., Malvar, R. A., Abuin, M. C., Ordás, B., Soengas, P. & Ordás, A. (2000). Genetic background effect on germination of su1 maize and viability of the su1 allele. Maydica 45, 109111.Google Scholar
Revilla, P., Malvar, R. A., Rodriguez, V. M., Butron, A., Ordás, B. & Ordás, A. (2006 a). Variation of sugary1 and shrunken2 gene frequency in different maize genetic backgrounds. Plant Breeding 125, 478481.Google Scholar
Revilla, P., Rodríguez, V. M., Malvar, R. A., Butrón, A. & Ordás, A. (2006 b). Comparison among sweet corn heterotic patterns. Journal of American Society for Horticultural Science 131, 388392.CrossRefGoogle Scholar
Revilla, P., Malvar, R. A., Ordás, B., Rodríguez, V. M. & Ordás, A. (2010). Genotypic effects on field performance of maize plants carrying the allele sugary1 . Plant Breeding 129, 9295.Google Scholar
SAS Institute (2005). The SAS System. Version 9. Cary, NC: SAS Institute.Google Scholar
Tracy, W. F. (1990). Potential of field corn germplasm for the improvement of sweet corn. Crop Science 30, 10411045.CrossRefGoogle Scholar
Tracy, W. F., Whitt, S. R. & Buckler, E. S. (2006). Recurrent mutation and genome evolution, example of sugary1 and the origin of sweet maize. Crop Science 46, S49S54.CrossRefGoogle Scholar
Yamamoto, A., Anholt, R. R. H., & Mackay, T. F. C. (2009). Epistatic interactions attenuate mutations affecting startle behaviour in Drosophila melanogaster . Genetics Research 91, 373382.Google Scholar
Zhang, K., Li, Y. & Lian, L. (2011). Pollen-mediated transgene flow in maize grown in the Huang-huai-hai region in China. Journal of Agricultural Science, Cambridge 149, 205216.CrossRefGoogle Scholar