Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T08:36:48.466Z Has data issue: false hasContentIssue false

Arbuscular mycorrhizal association in coffee

Published online by Cambridge University Press:  12 January 2009

S. A. L. ANDRADE*
Affiliation:
Depto de Fisiologia Vegetal, UNICAMP, IB, CP 6109, Campinas 13083-970, SP, Brazil
P. MAZZAFERA
Affiliation:
Depto de Fisiologia Vegetal, UNICAMP, IB, CP 6109, Campinas 13083-970, SP, Brazil
M. A. SCHIAVINATO
Affiliation:
Depto de Fisiologia Vegetal, UNICAMP, IB, CP 6109, Campinas 13083-970, SP, Brazil
A. P. D. SILVEIRA
Affiliation:
IAC, Centro de Pesquisa e Desenvolvimento de Solos e Recursos Ambientais, CP 28, Campinas 13012-970, SP, Brazil
*
*To whom all correspondence should be addressed. Email: sara.adrian@gmail.com

Summary

Despite previous research on mycorrhizal association with plants, the data on associations with coffee (Coffea species) are very sparse despite the great economic importance of this crop for many tropical developing countries. The present paper reviews the main aspects of the association between arbuscular mycorrhizal fungi (AMF) and coffee plants. This review includes topics on mycorrhizal effects on coffee nutritional status, pathogen–AMF interactions and responses to several environmental stresses. It also summarizes findings about the natural occurrence of AMF in different soils in which coffee is cultivated, some ecological aspects of this specific association and outlines trends for future investigations, which must elucidate the real benefits of mycorrhizae to coffee plants.

Type
Review Article
Copyright
Copyright © 2009 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aguín, O., Mansilla, J. P., Vilariño, A. & Sainz, M. J. (2004). Effects of mycorrhizal inoculation on root morphology and nursery production of three grapevine rootstocks. American Journal of Enology and Viticulture 55, 108111.CrossRefGoogle Scholar
Aliasgharzadeh, N., Saleh Rastin, N., Towfighi, H. & Alizadeh, A. (2001). Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11, 119122.CrossRefGoogle Scholar
Alloway, B. J. (2004). Zinc in Soils and Crop Nutrition. Brussels, Belgium: International Zinc Association (IZA). Available online at http://www.zincworld.org/Documents/Communications/Publications/ALLOWAY_PRINT.pdf (verified 11 November 2008).Google Scholar
Andrade, S. A. L., Abreu, C. A., De Abreu, M. F. & Silveira, A. P. D. (2004). Influence of lead addition on arbuscular mycorrhiza and Rhizobium symbioses under soybean plants. Applied Soil Ecology 26, 123131.CrossRefGoogle Scholar
Andrade, S. A. L., Silveira, A. P. D., Jorge, R. A. & De Abreu, M. F. (2007). Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza. International Journal of Phytoremediation 10, 114.CrossRefGoogle Scholar
Aristizabal, C., Rivera, E. L. & Janos, D. P. (2004). Arbuscular mycorrhizal fungi colonize decomposing leaves of Myrica parvifolia, M. pubescens and Paepalanthus sp. Mycorrhiza 14, 221228.CrossRefGoogle ScholarPubMed
Aroca, R., Porcel, R. & Ruiz-Lozano, J. M. (2007). How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytologist 173, 808816.CrossRefGoogle ScholarPubMed
Ashihara, H. (2006). Metabolism of alkaloids in coffee plants. Brazilian Journal of Plant Physiology 18, 18.CrossRefGoogle Scholar
Augé, R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11, 342.Google Scholar
Augé, R. M. (2004). Arbuscular mycorrhizae and soil/plant water relations. Canadian Journal of Soil Science 84, 373381.CrossRefGoogle Scholar
Azcón-Aguilar, C. & Barea, J. M. (1996). Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – an overview of the mechanisms involved. Mycorrhiza 6, 457464.CrossRefGoogle Scholar
Balota, E. L. & Lopes, E. S. (1996). Introdução de fungo micorrízico arbuscular no cafeeiro em condições de campo: II. Flutuação sazonal de raízes, de colonização e de fungos micorrízicos arbusculares associados. Revista Brasileira de Ciência do Solo 20, 225232.Google Scholar
Baumann, T. W. (2006). Some thoughts on the physiology of caffeine in coffee – and a glimpse of metabolite profiling. Brazilian Journal of Plant Physiology 18, 243251.CrossRefGoogle Scholar
Benhamou, N., Fortin, J. A., Hamel, C., St Arnaud, M. & Shatilla, A. (1994). Resistance response of mycorrhizal Ri T-DNA transformed carrot roots to infection by Fusarium oxysporum f sp. chrysanthemi. Phytopathology 84, 958968.CrossRefGoogle Scholar
Bhattacharya, S. & Bagyaraj, D. J. (2002). Effectiveness of arbuscular mycorrhizal fungal isolates on arabica coffee (Coffea arabica L.). Biological Agriculture and Horticulture 20, 125131.CrossRefGoogle Scholar
Blal, B., Morel, C., Gianinazzi-Pearson, V., Fardeau, J. C. & Gianinazzi, S. (1990). Influence of vesicular-arbuscular mycorrhizae on phosphate fertilizer efficiency in two tropical acid soils planted with micropropagated oil palm (Elaeis guineensis jacq). Biology and Fertility of Soils 9, 4348.CrossRefGoogle Scholar
Calvente, R., Cano, C., Ferrol, N., Azcón-Aguilar, C. & Barea, J. M. (2004). Analysing natural diversity of arbuscular mycorrhizal fungi in olive tree (Olea europaea L.) plantations and assessment of the effectiveness of native fungal isolates as inoculants for commercial cultivars of olive plantlets. Applied Soil Ecology 26, 1119.CrossRefGoogle Scholar
Calvet, C., Pinochet, J., Hernández-Dorrego, A., Estaún, V. & Camprubí, A. (2001). Field microplot performance of the peach–almond hybrid GF-677 after inoculation with arbuscular mycorrhizal fungi in a replant soil infested with root-knot nematodes. Mycorrhiza 10, 295300.CrossRefGoogle Scholar
Camargo, A. P. (1987). Balanço hídrico, florescimento e necessidade de água para o cafeeiro. In Simpósio sobre Manejo de Água na Agricultura (Ed.Viegas, G. P.), pp. 5390. Campinas, SP, Brazil: Fundação Cargill.Google Scholar
Campos, V., Lima, R. D. & Almeida, V. F. (1985). Nematóides parasitas do cafeeiro. Informe Agropecuário, Belo Horizonte 11, 5058.Google Scholar
Cardoso, I. M., Boddington, C., Janssen, B. H., Oenema, O. & Kuyper, T. W. (2003). Distribution of mycorrhizal fungal spores in soils under agroforestry and monocultural coffee systems in Brazil. Agroforestry System 58, 3343.CrossRefGoogle Scholar
Castillo, P., Nico, A. I., Azcón-Aguilar, C., Del Río Rincón, C., Calvet, C. & Jiménez-Díaz, R. M. (2006). Protection of olive planting stocks against parasitism of root-knot nematodes by arbuscular mycorrhizal fungi. Plant Pathology 55, 705713.CrossRefGoogle Scholar
Clark, R. B. & Zeto, S. K. (2000). Mineral acquisition by arbuscular mycorrhizal plants. Journal of Plant Nutrition 23, 867902.CrossRefGoogle Scholar
Colozzi-Filho, A. & Cardoso, E. J. B. N. (2000). Detecção de fungos micorrízicos a#rbusculares em raízes de cafeeiro e de crotalaria cultivada na entrelinha. Pesquisa Agropecuária Brasileira 35, 20332042.CrossRefGoogle Scholar
Colozzi-Filho, A., Siqueira, J. O., Saggin-Júnior, O. J., Guimarães, P. T. G. & Oliveira, E. (1994). Efetividade de diferentes fungos micorrízicos arbusculares na formação de mudas, crescimento pós-transplante e produção do cafeeiro. Pesquisa Agropecuária Brasileira 29, 13971406.Google Scholar
Corkidi, L., Allen, E. B., Merhaut, D., Allen, M. F., Downer, J., Bohn, J. & Evans, M. (2004). Assessing the infectivity of commercial mycorrhizal inoculants in plant nursery conditions. Journal of Environmental Horticulture 22, 149154.CrossRefGoogle Scholar
Costa, C. M. C., Cavalcante, U. M. T., Lima, M. R. Jr. & Maia, L. C. (2003). Inoculum density of arbuscular mycorrhizal fungi needed to promote growth of Hancornia speciosa Gomes seedlings. Fruits 58, 247254.CrossRefGoogle Scholar
Cruz, S. J. C. (1989). Estudio de la simbiosis micorrízica vesicular arbuscular em el cultivo de Coffea arabica var. Caturra. Fitopatologia Colombiana 13, 5664.Google Scholar
Cuenca, G., De Andrade, Z. & Meneses, E. (2001). The presence of aluminum in arbuscular mycorrhizas of Clusia multiflora exposed to increased acidity. Plant and Soil 231, 233241.CrossRefGoogle Scholar
DaMatta, F. M. (2004). Ecophysiological constraints on the production of shaded and unshaded coffee: a review. Field Crops Research 86, 99114.CrossRefGoogle Scholar
DaMatta, F. M. & Ramalho, J. D. C. (2006). Impacts of drought and temperature stress on coffee physiology and production: a review. Brazilian Journal of Plant Physiology 18, 5581.CrossRefGoogle Scholar
Davies, F. T., Svenson, S. E., Cole, J. C., Phavaphutanon, L., Duray, S. A., Olaldeportugal, V., Meier, C. E. & Bo, S. H. (1996). Non-nutritional stress acclimation of mycorrhizal woody plants exposed to drought. Tree Physiology 16, 985993.CrossRefGoogle ScholarPubMed
Davis, A. P., Govaerts, R., Bridson, D. M. & Stoffelen, P. (2006). An annotated taxonomic conspectus of the genus Coffea (Rubiaceae). Botanical Journal of the Linnean Society 152, 465512.CrossRefGoogle Scholar
Devi, M. C. & Reddy, M. N. (2002). Phenolic acid metabolism of groundnut (Arachis hypogaea L.) plants inoculated with VAM fungus and Rhizobium. Plant Growth Regulation 37, 151156.CrossRefGoogle Scholar
Dickinson, N. M., Lepp, N. W. & Surtan, G. T. K. (1988). Further studies on copper accumulation in Kenyan Coffea arabica soils. Agriculture, Ecosystems and Environment 21, 181190.CrossRefGoogle Scholar
Dodd, J. C., Boddington, C. L., Rodriguez, A., Gonzalez-Chavez, C. & Mansur, I. (2000). Mycelium of arbuscular mycorrhizal fungi (AMF) from different genera: form, function and detection. Plant and Soil 226, 131151.CrossRefGoogle Scholar
Duan, X., Neuman, D. S., Reiber, J. M., Green, C. D., Saxton, A. M. & Augé, R. M. (1996). Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought. Journal of Experimental Botany 47, 15411550.CrossRefGoogle Scholar
Elsen, A., Baimey, H., Swennen, R. & De Waele, D. (2003). Relative mycorrhizal dependency and mycorrhiza–nematode interaction in banana cultivars (Musa spp.) differing in nematode susceptibility. Plant and Soil 256, 303313.CrossRefGoogle Scholar
Farah, A. & Donangelo, C. M. (2006). Phenolic compounds in coffee. Brazilian Journal of Plant Physiology 8, 2336.CrossRefGoogle Scholar
Fester, T., Hause, B., Schmidt, D., Halfmann, K., Schmidt, J., Wray, V., Hause, G. & Strack, D. (2002). Occurrence and localization of apocarotenoids in arbuscular mycorrhizal plant roots. Plant and Cell Physiology 43, 256265.CrossRefGoogle ScholarPubMed
Gianinazzi-Pearson, V., Dumas-Gaudot, E., Gallotte, A., Tahiri-Alaoui, A. & Gianinazzi, S. (1996). Cellular and molecular defence-related root responses to invasion by arbuscular mycorrhizal fungi. New Phytologist 133, 4557.CrossRefGoogle Scholar
Giri, B. & Mukerji, K. G. (2004). Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14, 307312.CrossRefGoogle ScholarPubMed
Gomes-Junior, R. A., Moldes, C. A., Delite, F. S., Gratão, P. L., Mazzafera, P., Lea, P. J. & Azevedo, R. A. (2006 a). Nickel elicits a fast antioxidant response in Coffea arabica cells. Plant Physiology and Biochemistry 44, 420429.CrossRefGoogle ScholarPubMed
Gomes-Junior, R. A., Moldes, C. A., Delite, F. S., Pompeu, G. B., Gratão, P. L., Mazzafera, P., Lea, P. J. & Azevedo, R. A. (2006 b). Antioxidant metabolism of coffee cell suspension cultures in response to cadmium. Chemosphere 65, 13301337.CrossRefGoogle ScholarPubMed
Habte, M. & Bittenbender, H. C. (1999). Reactions of coffee to soil solution P concentration and arbuscular mycorrhizal colonization. Journal of South Pacific Agriculture 6, 2934.Google Scholar
Howeler, R. H., Sieverding, E. & Saif, S. R. (1987). Practical aspects of mycorrhizal technology in some tropical crops and pastures. Plant and Soil 100, 249283.CrossRefGoogle Scholar
Janse, J. M. (1897). Les endophytes radicaux de quelques plantes javanaises. Annales du Jardin Botanique de Buitenzorg 14, 53201.Google Scholar
Jeffries, P. & Barea, J. M. (2001). Arbuscular mycorrhiza – a key component of sustainable plant-soil ecosystems. In The Mycota, Vol. IX: Fungal Associations (Ed.Hock, B.), pp. 95113. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Karasawa, S., Silva, R. A., Miranda, J. H. & Duarte, S. N. (2000). Comportamento de mudas de café submetidas a irrigação com diferentes níveis de salinidade. In Congresso Brasileiro de Engenharia Agrícola 24. Anais Fortaleza: SBEA. On CD ROM.Google Scholar
Khaosaad, T., Vierheilig, H., Nell, M., Zitterl-Eglseer, K. & Novak, J. (2006). Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza 16, 443446.CrossRefGoogle ScholarPubMed
Konrad, M. L. F. (2003). Crescimento de cafeeiro sob influência do alumínio em solução nutritiva e em solo ácido, e de micorriza arbuscular. Ph.D. Thesis, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil.Google Scholar
Lana, M. M., Zambolin, L., Valle, F. X. R. & Santos, J. M. (1991). Tolerância do cafeeiro (Coffea arábica) ao nematóide Meloidogyne exígua induzida por fungos micorrízicos. Fitopatologia Brasileira 16, 5054.Google Scholar
Lepp, N. W., Dickinson, N. M. & Ormand, K. L. (1984). Distribution of fungicide-derived copper in soils, litter, and vegetation of different aged stands of coffee (Coffea arabica L.) in Kenya. Plant and Soil 77, 263270.CrossRefGoogle Scholar
Loland, J. Ø. & Singh, B. R. (2004). Extractability and plant uptake of copper in contaminated coffee orchard soils as affected by different amendments. Acta Agriculturae Scandinavica, Section B – Plant Soil Science 54, 121127.Google Scholar
Lopes, E. S., Oliveira, E., Dias, R. & Schenck, N. C. (1983). Occurrence and distribution of vesicular-arbuscular mycorrhizal fungi in coffee (Coffea arabica L.) plantations in central São Paulo State, Brazil. Turrialba 33, 417422.Google Scholar
Lopes, E. S., Portugal, E. P., Gonçalves, W., Dias, R. & Costa, W. M. (1987). Interações entre micorrizas, adubações fosfatadas e Meloidogyne incógnita em mudas de cafeeiro (Coffea arábica cv. Mundo Novo). In II-Reunião Brasileira sobre Micorrizas, pp. 3334. São Paulo, Brazil: Secretaria do Meio Ambiente e da Agricultura.Google Scholar
Lovato, P. E., Trouvelot, A., Gianinazzi-Pearson, V. & Gianinazzi, S. (2006). Enhanced growth of wild cherry using micropropagated plants and mycorrhizal inoculation. Agronomy for Sustainable Development 26, 209213.CrossRefGoogle Scholar
Martins, D. R., De Camargo, O. A. & Bataclia, O. C. (2005). Bean and beverage quality in coffee crops treated with sewage sludge. Bragantia 64, 115126.CrossRefGoogle Scholar
Matiello, J. B. (1999). Evolução da salinidade e comportamento do cafeeiro em área irrigada por gotejamento em Brejões, BA. In Congresso Brasileiro de Pesquisa Cafeeira 25 Anais, p. 185. Sao Paulo, Brazil: CP&D, Franca.Google Scholar
Mazzafera, P. (1998). Growth and biochemical alterations in coffee due to selenite toxicity. Plant and Soil 201, 189196.CrossRefGoogle Scholar
Mazzafera, P. & Teixeira, J. P. F. (1989). Prolina em cafeeiros submetidos a déficit hídrico. Turrialba 39, 305313.Google Scholar
Miransari, M., Bahrami, H. A., Rejali, F., Malakouti, M. J. & Torabi, H. (2007). Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on corn (Zea mays L.) growth. Soil Biology and Biochemistry 39, 20142026.CrossRefGoogle Scholar
Muleta, D., Assefa, F., Nemomissa, S. & Granhall, U. (2007). Composition of coffee shade tree species and density of indigenous arbuscular mycorrhizal fungi (AMF) spores in Bonga natural coffee forest, southwestern Ethiopia. Forest Ecology and Management 241, 145154.CrossRefGoogle Scholar
Muschler, R. G. (2001). Shade improves coffee quality in a sub-optimal coffee zone of Costa Rica. Agroforestry Systems 51, 131139.CrossRefGoogle Scholar
Osorio, N. W., Alzate, J. M. & Ramirez, G. A. (2002). Coffee seedling growth as affected by mycorrhizal inoculation and organic amendment. Communications in Soil Science and Plant Analysis 33, 14251434.CrossRefGoogle Scholar
Pavan, M. A. & Bingham, F. T. (1982). Toxicity of aluminum to coffee seedlings in nutrient solution. Soil Science Society of America 6, 993997.CrossRefGoogle Scholar
Pavan, M. A., Chaves, J. C. D., Siqueira, R., Androcioli-Filho, A., Colozzi-Filho, A. & Balota, E. L. (1999). High coffee population density to improve fertility of an oxisol. Pesquisa Agropecuária Brasileira 34, 459465.CrossRefGoogle Scholar
Porcel, R., Gómez, M., Kaldenhoff, R. & Ruiz-Lozano, J. M. (2005). Impairment of NtAQP1 gene expression in tobacco plants does not affect root colonisation pattern by arbuscular mycorrhizal fungi but decreases their symbiotic efficiency under drought. Mycorrhiza 15, 417423.CrossRefGoogle Scholar
Poulsen, K. H., Nagy, R., Gao, L.-L., Smith, S. E., Bucher, M., Smith, F. A. & Jakobsen, I. (2005). Physiological and molecular evidence for Pi uptake via the symbiotic pathway in a reduced mycorrhizal colonization mutant in tomato associated with a compatible fungus. New Phytologist 168, 445453.CrossRefGoogle Scholar
Redecker, D. (2000). Specific PCR primers to identify arbuscular mycorrhizal fungi within colonized roots. Mycorrhiza 10, 7380.CrossRefGoogle Scholar
Requena, N. (2005). Measuring quality of service: phosphate ‘à la carte’ by arbuscular mycorrhizal fungi. New Phytologist 168, 268271.CrossRefGoogle Scholar
Riess, S. & Sanvito, A. (1985). Investigations on vesicular-arbuscular mycorrhizae in different conditions of coffee cultivations in Mexico. Micologia Italiana 14, 5762.Google Scholar
Rillig, M. C. & Mummey, D. L. (2006). Mycorrhizas and soil structure. New Phytologist 171, 4153.CrossRefGoogle ScholarPubMed
Rivera, R. F., Fernández, A., Hernández, J. R. & Fernández, T. R. (2003). El manejo efectivo de la simbiosis micorrizica, una vía hacia la agricultora sostenible: estudio de caso. El caribe: Ciudad de La Habana.Google Scholar
Rivera-Becerril, F., Calantzis, C., Turnau, K., Caussanel, J. P., Belimov, A. A., Gianinazzi, S., Strasser, R. J. & Gianinazzi-Pearson, V. (2002). Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum Sativum L. genotypes. Journal of Experimental Botany 371, 11771185.CrossRefGoogle Scholar
Rivillas Osorio, C. A. & Dodd, J. C. (1996). The effects of arbuscular mycorrhizal fungi on two different coffee varieties from Colombia and their biochemical detection in roots. In Mycorrhizas in Integrated Systems from Genes to Plant Development. Proceedings of 4th European Symposium on Mycorrhizas, Granada, Spain, pp. 4750. Brussels: European Commission.Google Scholar
Ruiz-Lozano, J. M. (2003). Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13, 309317.CrossRefGoogle ScholarPubMed
Ruiz-Lozano, J. M. & Azcón, R. (2000). Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 10, 137143.CrossRefGoogle Scholar
Ryan, M. H. & Graham, J. H. (2002). Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant and Soil 244, 263271.CrossRefGoogle Scholar
Saggin-Júnior, O. J. & Siqueira, J. O. (1995). Avaliação da deficiência simbiótica de fungos endomicorrízicos para o cafeeiro. Revista Brasileira de Ciência do Solo 19, 221228.Google Scholar
Saggin-Junior, O. J. & Siqueira, J. O. (1996). Micorrizas arbusculares em cafeeiro. In Avanços em fundamentos e aplicação de micorriza (Ed.Siqueira, J. O.), pp. 203254. UFL, Lavras, Brazil.Google Scholar
Sanchez, C., Rivera, R., Gonzalez, C., Cupull, R., Herrera, R. & Bustamante, C. (2000). Efecto de 15 cepas de hongos micorrizógenos (HMA) sobre la producción de posturas de cafetos en tres tipos de suelos del macizo montañoso Guamuhaya. In XIX Simposio Latinoamericano de Caficultura, Memoria, San José, Costa Rica, 2–6 Octubre 2000, pp. 287331.Google Scholar
Sanchez, C., Montilla, E., Rivera, R. & Cupull, R. (2005). Comportamiento de 15 cepas de hongos micorrizogenos (HMA) sobre el desarrollo de posturas de cafeto en un suelo pardo gleyzoso. Revista Forestal Latinoamericana 38, 8395.Google Scholar
Schweiger, P. & Jakobsen, I. (2000). Laboratory and field methods for measurement of hyphal uptake of nutrients in soil. Plant and Soil 226, 237244.CrossRefGoogle Scholar
Schüßler, A., Schwarzott, D. & Walker, C. (2001). A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological Research 105, 14131421.CrossRefGoogle Scholar
Sieverding, E. (1991). Vesicular-Arbuscular Mycorrhiza Management in Tropical Agrosystems. Eschborn, Germany: Deutsche Gesellschaft fur Technische Zusammenarbeit.Google Scholar
Sieverding, E. & Toro, S. T. (1986). The genus Entrophospora in Colombia. In Physiological and Genetical Aspects of Mycorrhizae (EdsGianinazzi-Pearson, V. & Gianinazzi, S.), pp. 621626. Paris, France: INRA.Google Scholar
Silva, E. A., DaMatta, F. M., Ducatti, C., Regazzi, A. J. & Barros, R. S. (2004). Seasonal changes in vegetative growth and photosynthesis of Arabica coffee trees. Field Crops Research 89, 349357.CrossRefGoogle Scholar
Silvarolla, M. B., Mazzafera, P. & Fazuoli, L. C. (2004). A naturally decaffeinated arabica coffee. Nature 429, 826.CrossRefGoogle ScholarPubMed
Siqueira, J. O., Hubbell, D. H. & Mahmud, A. W. (1984). Effect of liming on spore germination, germ tube growth and root colonization by vesicular-arbuscular mycorrhizal fungi. Plant and Soil 76, 115124.CrossRefGoogle Scholar
Siqueira, J. O., Colozzi-Filho, A., Oliveira, E., Fernandes, A. B. & Florence, M. L. (1987). Micorrizas vesicular-arbusculares em mudas de cafeeiro produzidas no sul do Estado de Minas Gerais. Pesquisa Agropecuária Brasileira 22, 3138.Google Scholar
Siqueira, J. O., Colozzi-Filho, A., Saggin-Júnior, O. J., Guimarães, P. T. G. & Oliveira, E. (1993). Crescimento de mudas e produção do cafeeiro sob influência de fungos micorrízicos e superfosfato. Revista Brasileira de Ciência do Solo 17, 5360.Google Scholar
Siqueira, J. O., Saggin-Junior, O. J., Flores-Aylas, W. W. & Guimarães, P. T. G. (1998). Arbuscular mycorrhizal inoculation and superphosphate application influence plant development and yield of coffee in Brazil. Mycorrhiza 7, 293300.CrossRefGoogle Scholar
Speer, K. & Kolling-Speer, I. (2006). The lipid fraction of the coffee bean. Brazilian Journal of Plant Physiology 18, 201216.CrossRefGoogle Scholar
Strack, D., Fester, T., Hause, B., Schliemann, W. & Walter, M. H. (2003). Arbuscular mycorrhiza: biological, chemical and molecular aspects. Journal of Chemical Ecology 29, 19551979.CrossRefGoogle ScholarPubMed
Sylvia, D. M. (1999). Fundamentals and applications of arbuscular mycorrhizae: A ‘biofertilizer’ perspective. In Soil Fertility, Biology, and Plant Nutrition Interrelationships (EdsSiqueira, J. O., Moreira, F. M. S., Lopes, A. S., Guilherme, L. R. G., Faquin, V., Furtini Neto, A. E. & Carvalho, J. G.), pp. 705723. Viçosa, Brazil: SBCS, Lavras: UFLA/DCS.Google Scholar
Theodoro, V. C. A., Alvarenga, M. I. N., Guimarães, R. J. & Júnior, M. M. (2003). Carbono da biomassa microbiana e micorriza em solo sob mata nativa e agroecossistemas cafeeiros. Acta Scientiarum: Agronomy 25, 147153.Google Scholar
Tisserant, B., Brenac, V., Requena, N., Jeffries, P. & Dodd, J. C. (1998). The detection of Glomus spp. (arbuscular mycorrhizal fungi) forming mycorrhizas in three plants, at different stages of seedling development, using mycorrhiza-specific isozymes. New Phytologist 138, 225239.CrossRefGoogle ScholarPubMed
Todd, C. (2004). Mycorrhizal fungi, nature's key to plant survival and success. Pacific Horticulture 65, 812.Google Scholar
Toro-Garcia, M. (1987). Efectividad del hongo Gigaspora margarita como micorriza de cafetos a exposición solar. Caracas, Venezuela: Universidad Central de Venezuela.Google Scholar
Tristão, F. S. M., Andrade, S. A. L. & Silveira, A. P. D. (2006). Arbuscular mycorrhizal fungi on the development of coffee plantlets using different organic substrates. Bragantia 65, 649658.CrossRefGoogle Scholar
Vaast, P. (1995). The effects of vesicular-arbuscular mycorrhizae and nematodes on the growth and nutrition of coffee. Ph.D. thesis, University of California, Davis.Google Scholar
Vaast, P. & Zasoski, R. J. (1992). Effects of VA-mycorrhizae and nitrogen sources on rhizosphere soil characteristics, growth and nutrient acquisition of coffee seedlings (Coffea arabica L.). Plant and Soil 147, 3139.CrossRefGoogle Scholar
Vaast, P., Zasoski, R. J. & Bledsoe, C. S. (1996). Effects of vesicular-arbuscular mycorrhizal inoculation at different soil P availabilities on growth and nutrient uptake of in vitro propagated coffee (Coffea arabica L.) plants. Mycorrhiza 6, 493497.CrossRefGoogle Scholar
Vaast, P., Caswell-Chen, E. P. & Zasoski, R. J. (1998). Influences of a root-lesion nematode, Pratylenchus coffeae, and two arbuscular mycorrhizal fungi, Acaulospora mellea and Glomus clarum on coffee (Coffea arabica L.). Biology and Fertility of Soils 26, 130135.CrossRefGoogle Scholar
Varma, A. (1999). Hydrolytic enzymes from arbuscular mycorrhizae: the current status. In Mycorrhiza, 2nd edn (EdsVarma, A. & Hock, B.), pp. 373389. Berlin: Springer.CrossRefGoogle Scholar
Vidal, M. T., Azcon-Aguilar, C., Barea, J. M. & Pliegoalfaro, F. (1992). Mycorrhizal inoculation enhances growth and development of micropropagated plants of avocado. HortScience 27, 785787.CrossRefGoogle Scholar
Wilcke, W., Kretzschmar, S., Bundt, M., Saborío, G. & Zech, W. (2000). Depth distribution of aluminum and heavy metals in soils of Costa Rican coffee cultivation areas. Journal of Plant Nutrition and Soil Science 163, 499502.3.0.CO;2-8>CrossRefGoogle Scholar
Young, A. (1997). Agroforestry for Soil Management. Wallingford, UK: ICRAF and CAB International.CrossRefGoogle Scholar