Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T15:00:28.954Z Has data issue: false hasContentIssue false

Acetic acid bacteria can initiate aerobic deterioration of whole crop maize silage

Published online by Cambridge University Press:  27 March 2009

S. F. Spoelstra
Affiliation:
Institute for Livestock Feeding and Nutrition Research(I.V.V.O.), P.O. Box 160, S200AD Lelystad, The Netherlands
M. G. Courtin
Affiliation:
Institute for Livestock Feeding and Nutrition Research(I.V.V.O.), P.O. Box 160, S200AD Lelystad, The Netherlands
J. A. C. Van Beers
Affiliation:
Institute for Livestock Feeding and Nutrition Research(I.V.V.O.), P.O. Box 160, S200AD Lelystad, The Netherlands

Summary

Acetic acid bacteria were isolated from maize silages and from samples of maize silage exposed to air. The isolates apparently belonged to the genus Acetobacter. By inoculating maize silage with strains of acetic acid bacteria isolated from silage and by monitoring the development of the microbiota of samples exposed to air it was demonstrated that acetic acid bacteria can be responsible for the onset of aerobic deterioration of maize silage. However, acetic acid bacteria and yeasts often developed simultaneously in uninoculated silage samples exposed to air. In all experiments ethanol was oxidized to acetic acid followed by a rapid oxidation of lactic and acetic acids when ethanol was depleted.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aries, V., Cheny, P. A. & Mossel, D. A. A. (1982). Ecological studies on the occurrence of bacteria utilizing lactic acid at pH values below 4·5. Journal of Applied Bacteriology 52, 345351.CrossRefGoogle ScholarPubMed
Barry, T. N., Dimenna, M. E., Webb, P. R. & Parle, J. N. (1980). Some observations on aerobic deterioration in untreated silages and in silages made with formaldehyde-containing additives. Journal of the Science of Food and Agriculture 31, 133146.CrossRefGoogle Scholar
Beck, T. & Gross, F. (1964). Ursachen der unterschiedliehen Haltbarkeit von Garfutter. Das Wirtschaftseigene Futter 10, 298312.Google Scholar
Daniel, P., Honig, H., Weise, F. & Zimmer, E. (1970). Wirkung von Popionsäure bei der Grünfuttersilierung. Das Wirtschaftseigene Futter 16, 239252.Google Scholar
De Ley, J., Swings, J. & Gillis, M. (1984). Gram negative aerobic rods and cocci. In Bergey's Manual of Systematic Bacteriology (ed. Murray, R. G. E.et al.), pp. 267278. London: Williams and Wilkins.Google Scholar
Honig, H. & Woolford, M. K. (1980). Changes in silage on exposure to air. Occasional Symposium of the British Grassland Society, no. 11 (ed. Thomas, C.), pp. 7687. Hurley, England: The British Grassland Society.Google Scholar
Jonsson, A. & Pahlow, G. (1984). Systematic and biochemical characterization of yeasts growing in grass silage inoculated with Lactobacillus cultures. Animal Research and Development 20, 722.Google Scholar
Jones, Owen V. M. & Lechocki, S. (1974). A modified gas chromatographic method for lactate analysis. Clinical Biochemistry 7, 97101.CrossRefGoogle Scholar
Lindgren, S., Petterson, K., Kaspersson, A., Jonsson, A. & Lingvall, P. (1985). Microbial dynamics during aerobic deterioration of silages. Journal of the Science of Food and Agriculture 36, 765774.CrossRefGoogle Scholar
Middelhoven, W. J. & Franzen, M. M. (1986). The yeast flora of ensiled whole-crop maize. Journal of the Science of Food and Agriculture 37, 855861.CrossRefGoogle Scholar
Moon, N. J. (1983). Inhibition of growth of acid-tolerant yeasts by acetate, lactate and propionate and their mixtures. Journal of Applied Bacteriology 55, 453460.CrossRefGoogle Scholar
Moon, N. J. & Ely, L. O. (1979). Identification and properties of yeasts associated with the aerobic deterioration of wheat and alfalfa silages. Mycopathologia 69, 153156.CrossRefGoogle Scholar
Ohyama, Y. & McDonald, P. (1975). The effect of some additives on aerobic deterioration of silages. Journal of the Science of Food and Agriculture 26, 941948.CrossRefGoogle Scholar
Pahlow, G. (1982). Verbesserung der aeroben Stabilität von Silage durch Impfpräparate. Das Wirtschaftseigene Futter 28, 107122.Google Scholar
Rossi, J. (1971). L'aspetto microbioco dell'insilato Harvestore: gli acetobatteri. Annali di Microbiologia ed Enzimologia 21, 113.Google Scholar
Spoelstra, S. F. (1983). A laboratory silo permitting repeated sampling. Netherlands Journal of Agricultural Science 31, 8992.CrossRefGoogle Scholar
Spoelstra, S. F., Tjoonk, L. & Steg, A. (1985). Admixing cage layer manure (CLM) improves the aerobic stability of whole crop maize silage. In Agricultural Waste Utilization and Management. Proceedings of the Fifth International Symposium Agricultural Wastes (ed. Converse, J. M.), pp. 159166. St Joseph, Michigan, U.S.A.: American Society of Agricultural Engineers.Google Scholar
Van Es, A. J. H. & Van Der Meer, J. M. (1981). Methods of Analysis for the Prediction of the Energy and Protein Values of Feeds for Farm Animals. Lelystad, The Netherlands: Institute for Livestock Feeding and Nutrition Research.Google Scholar
Weise, F. (1963). Beitriige zur Grundlagenforschung in der Garfutterbereitung. II. Das bakteriologische Bild einer Grassilage. Landbauforschung Volkenrode 13, 111116.Google Scholar
Woolford, M. K. & Cook, J. E. (1978). A note on the effect on the manipulation of the microflora by means of antibiotics. Animal Feed Science and Technology 3, 8994.CrossRefGoogle Scholar
Woolford, M. K., Honig, H. & Fenlon, J. S. (1978). Untersuchungen über den aeroben Abbau in Silage mit einer Labortechnik. Teil 2: Mikrobiologische, physikalische und chemische Veränderungen während des aeroben Abbaus von Maissilage. Das Wirtschaftseigene Futter 24, 125139Google Scholar
Woolford, M. K. & Wilkie, A. C. (1984). Investigations into the role of specific micro-organisms in the aerobic deterioration of maize silage. Journal of Agricultural Science, Cambridge 102, 97104.CrossRefGoogle Scholar