Skip to main content Accessibility help
×
Home
Hostname: page-component-65dc7cd545-2sbtp Total loading time: 0.397 Render date: 2021-07-24T11:57:56.239Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Performance of 13 crop simulation models and their ensemble for simulating four field crops in Central Europe

Published online by Cambridge University Press:  02 June 2021

M. Kostková
Affiliation:
Institute of Agriculture Systems and Bioclimatology, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic Global Change Research Institute Academy of Sciences of the Czech Republic, Belidla 986/4b, 603 00 Brno, Czech Republic
P. Hlavinka
Affiliation:
Institute of Agriculture Systems and Bioclimatology, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic Global Change Research Institute Academy of Sciences of the Czech Republic, Belidla 986/4b, 603 00 Brno, Czech Republic
E. Pohanková
Affiliation:
Institute of Agriculture Systems and Bioclimatology, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic Global Change Research Institute Academy of Sciences of the Czech Republic, Belidla 986/4b, 603 00 Brno, Czech Republic
K. C. Kersebaum
Affiliation:
Global Change Research Institute Academy of Sciences of the Czech Republic, Belidla 986/4b, 603 00 Brno, Czech Republic Leibniz Centre for Agricultural Landscape Research, Eberswalder Straße 84, 15374 Müncheberg, Germany
C. Nendel
Affiliation:
Global Change Research Institute Academy of Sciences of the Czech Republic, Belidla 986/4b, 603 00 Brno, Czech Republic Leibniz Centre for Agricultural Landscape Research, Eberswalder Straße 84, 15374 Müncheberg, Germany University of Potsdam, Am Mühlenberg 3, 14476 Potsdam (Golm), Germany
A. Gobin
Affiliation:
Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium Department of Earth and Environmental Sciences, Faculty of BioScience Engineering, Celestijnenlaan 200E, 3001 Heverlee, Belgium
J. E. Olesen
Affiliation:
Global Change Research Institute Academy of Sciences of the Czech Republic, Belidla 986/4b, 603 00 Brno, Czech Republic Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
R. Ferrise
Affiliation:
Department of Agriculture, Food, Environment, and Forestry, University of Florence, P.le delle Cascine 18, 50144, Firenze, Italy
C. Dibari
Affiliation:
Department of Agriculture, Food, Environment, and Forestry, University of Florence, P.le delle Cascine 18, 50144, Firenze, Italy
J. Takáč
Affiliation:
National Agricultural and Food Centre, Soil Science and Conservation Research Institute, Trenčianska 55, 821 09 Bratislava, Slovakia
A. Topaj
Affiliation:
Agrophysical Research Institute, Grazhdansky pr., 14, 195220, Saint-Petersburg, Russia
S. Medvedev
Affiliation:
Agrophysical Research Institute, Grazhdansky pr., 14, 195220, Saint-Petersburg, Russia
M. P. Hoffmann
Affiliation:
Agvolution GmbH, Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), Georg-August-University Göttingen, Grisebachstraße 6, 37077, Göttingen, Germany
T. Stella
Affiliation:
Leibniz Centre for Agricultural Landscape Research, Eberswalder Straße 84, 15374 Müncheberg, Germany
J. Balek
Affiliation:
Institute of Agriculture Systems and Bioclimatology, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic Global Change Research Institute Academy of Sciences of the Czech Republic, Belidla 986/4b, 603 00 Brno, Czech Republic
M. Ruiz-Ramos
Affiliation:
Ceigram – Research Centre for the Management of Agricultural and Environmental Risks, Universidad Politécnica de Madrid – Ciudad Universitaria, Madrid 28040, Spain
A. Rodríguez
Affiliation:
Ceigram – Research Centre for the Management of Agricultural and Environmental Risks, Universidad Politécnica de Madrid – Ciudad Universitaria, Madrid 28040, Spain Department of Economic Analysis and Finances, Universidad de Castilla-La Mancha, 45071, Toledo, Spain
G. Hoogenboom
Affiliation:
Institute for Sustainable Food Systems, University of Florida, 185 Rogers Hall, P. O. Box 110570, Gainesville, Florida 32611, USA
V. Shelia
Affiliation:
Institute for Sustainable Food Systems, University of Florida, 185 Rogers Hall, P. O. Box 110570, Gainesville, Florida 32611, USA
D. Ventrella
Affiliation:
Consiglio per la Ricerca in Agricoltura e l'analisi dell'economia agraria, Centro di Ricerca Agricoltura e Ambiente, (CREA-AA), Via Celso Ulpiani 5, 70125 Bari, Italy
L. Giglio
Affiliation:
Consiglio per la Ricerca in Agricoltura e l'analisi dell'economia agraria, Centro di Ricerca Agricoltura e Ambiente, (CREA-AA), Via Celso Ulpiani 5, 70125 Bari, Italy
B. Sharif
Affiliation:
Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
I. Oztürk
Affiliation:
Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
R. P. Rötter
Affiliation:
Agvolution GmbH, Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), Georg-August-University Göttingen, Grisebachstraße 6, 37077, Göttingen, Germany Centre for Biodiversity and Sustainable Land Use (CBL), Georg-August-University Göttingen, Buesgenweg 1, 37077 Göttingen, Germany
J. Balkovič
Affiliation:
International Institute for Applied Systems Analysis (IIASA), Biodiversity and Natural Resources Program (BNR), Schlossplatz 1, A-2361 Laxenburg, Austria Faculty of Natural Science, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
R. Skalský
Affiliation:
National Agricultural and Food Centre, Soil Science and Conservation Research Institute, Trenčianska 55, 821 09 Bratislava, Slovakia International Institute for Applied Systems Analysis (IIASA), Biodiversity and Natural Resources Program (BNR), Schlossplatz 1, A-2361 Laxenburg, Austria
M. Moriondo
Affiliation:
Department of Agriculture, Food, Environment, and Forestry, University of Florence, P.le delle Cascine 18, 50144, Firenze, Italy CNR IBE, via Madonna del Piano 10, 50019, Firenze, Italy
S. Thaler
Affiliation:
Global Change Research Institute Academy of Sciences of the Czech Republic, Belidla 986/4b, 603 00 Brno, Czech Republic Institute of Meteorology and Climatology (BOKU-Met), University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
Z. Žalud
Affiliation:
Institute of Agriculture Systems and Bioclimatology, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic Global Change Research Institute Academy of Sciences of the Czech Republic, Belidla 986/4b, 603 00 Brno, Czech Republic
M. Trnka
Affiliation:
Institute of Agriculture Systems and Bioclimatology, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic Global Change Research Institute Academy of Sciences of the Czech Republic, Belidla 986/4b, 603 00 Brno, Czech Republic
Corresponding
E-mail address:

Abstract

The main aim of the current study was to present the abilities of widely used crop models to simulate four different field crops (winter wheat, spring barley, silage maize and winter oilseed rape). The 13 models were tested under Central European conditions represented by three locations in the Czech Republic, selected using temperature and precipitation gradients for the target crops in this region. Based on observed crop phenology and yield from 1991 to 2010, performances of individual models and their ensemble were analyzed. Modelling of anthesis and maturity was generally best simulated by the ensemble median (EnsMED) compared to the ensemble mean and individual models. The yield was better simulated by the best models than estimated by an ensemble. Higher accuracy was achieved for spring crops, with the best results for silage maize, while the lowest accuracy was for winter oilseed rape according to the index of agreement (IA). Based on EnsMED, the root mean square errors (RMSEs) for yield was 1365 kg/ha for winter wheat, 1105 kg/ha for spring barley, 1861 kg/ha for silage maize and 969 kg/ha for winter oilseed rape. The AQUACROP and EPIC models performed best in terms of spread around the line of best fit (RMSE, IA). In some cases, the individual models failed. For crop rotation simulations, only models with reasonable accuracy (i.e. without failures) across all included crops within the target environment should be selected. Application crop models ensemble is one way to increase the accuracy of predictions, but lower variability of ensemble outputs was confirmed.

Type
Crops and Soils Research Paper
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

References

Addiscott, TM and Whitmore, AP (1987) Computer simulation of changes in soil mineral nitrogen and crop nitrogen during autumn, winter and spring. Journal of Agricultural Science 109, 141157.CrossRefGoogle Scholar
Asseng, S, Ewert, F, Rosenzweig, C, Jones, JW, Hatfield, JL, Ruane, AC, Boote, KJ, Thorburn, PJ, Rötter, RP, Cammarano, D, Brisson, N, Basso, B, Martre, P, Aggarwal, PK, Angulo, C, Bertuzzi, P, Biernath, C, Challinor, AJ, Doltra, J, Gayler, S, Goldberg, R, Grant, R, Heng, L, Hooker, J, Hunt, LA, Ingwersen, J, Izaurralde, RC, Kersebaum, KC, Müller, C, Naresh Kumar, S, Nendel, C, O'Leary, G, Olesen, JE, Osborne, TM, Palosuo, T, Priesack, E, Ripoche, D, Semenov, MA, Shcherbak, I, Steduto, P, Stöckle, C, Stratonovitch, P, Streck, T, Supit, I, Tao, F, Travasso, M, Waha, K, Wallach, D, White, JW, Williams, JR and Wolf, J (2013) Uncertainty in simulating wheat yields under climate change. Nature Climate Change 3, 827832.CrossRefGoogle Scholar
Asseng, S, Ewert, F, Martre, P, Rötter, RP, Lobell, DB, Cammarano, D, Kimball, BA, Ottman, MJ, Wall, GW, White, JW, Reynolds, MP, Alderman, PD, Prasad, PVV, Aggarwal, PK, Anothai, J, Basso, B, Biernath, C, Challinor, AJ, De Sanctis, G, Doltra, J, Fereres, E, Garcia-Vila, M, Gayler, S, Hoogenboom, G, Hunt, LA, Izaurralde, RC, Jabloun, M, Jones, CD, Kersebaum, KC, Koehler, A-K, Müller, C, Naresh Kumar, S, Nendel, C, O’Leary, G, Olesen, JE, Palosuo, T, Priesack, E, Eyshi Rezaei, E, Ruane, AC, Semenov, MA, Shcherbak, I, Stöckle, C, Stratonovitch, P, Streck, T, Supit, I, Tao, F, Thorburn, PJ, Waha, K, Wang, E, Wallach, D, Wolf, J, Zhao, Z and Zhu, Y (2015) Rising temperatures reduce global wheat production. Nature Climate Change 5, 143147.CrossRefGoogle Scholar
Bassu, S, Brisson, N, Durand, JL, Boote, K, Lizaso, J, Jones, JW, Rosenzweig, C, Ruane, AC, Adam, M, Baron, C, Basso, B, Biernath, C, Boogaard, H, Conijn, S, Corbeels, M, Deryng, D, De Sanctis, G, Gayler, S, Grassini, P, Hatfield, J, Hoek, S, Izaurralde, C, Jongschaap, R, Kemanian, AR, Kersebaum, KC, Kim, SH, Kumar, NS, Makowski, D, Müller, C, Nendel, C, Priesack, E, Pravia, MV, Sau, F, Shcherbak, I, Tao, F, Teixeira, E, Timlin, D and Waha, K (2014) How do various maize crop models vary in their responses to climate change factors? Global Change Biology 20, 23012320.CrossRefGoogle ScholarPubMed
CISTA Central Institute for Supervising and Testing in Agriculture (2004) Přehledy odrůd: Kukuřice 2004 (Variety overviews: Maize 2004). The National Plant Variety Office. ISBN 80-86548-61-9. Available at http://www.agris.cz/Content/files/main_files/57/135173/PO_kukurice04.pdf (accessed 7 November 2018).Google Scholar
CISTA Central Institute for Supervising and Testing in Agriculture (2007) Seznam doporučených odrůd 2007 (List of recommended varieties 2007). The National Plant Variety Office. ISBN 80-86548-92-9. Available at http://eagri.cz/public/web/file/112995/SDO_PO_Obilniny_07.pdf (accessed 7 November 2018).Google Scholar
CISTA Cetral Institute for Supervising and Testing in Agriculture (2006) Seznam doporučených odrůd 2006: Řepka olejka (List of recommended varieties 2006: Oilseed rape). The Nationl Plant Variety Office. ISBN 80-86548-75-9. Available at http://eagri.cz/public/web/file/112934/SDO_PO_Olejniny.pdf (accessed 7 November 2018).Google Scholar
Confalonieri, R, Orlando, F, Paleari, L, Stella, T, Gilardelli, C, Movedi, E, Pagani, V, Cappelli, G, Vertemara, A, Alberti, L, Alberti, P, Atanassiu, S, Bonaiti, M, Cappelletti, G, Ceruti, M, Confalonieri, A, Corgatelli, G, Corti, P, Dell'Oro, M, Ghidoni, A, Lamarta, A, Maghini, A, Mambretti, M, Manchia, A, Massoni, G, Mutti, P, Pariani, S, Pasini, D, Pesenti, A, Pizzamiglio, G, Ravasio, A, Rea, A, Santorsola, D, Serafini, G, Slavazza, M and Acutis, M (2016) Uncertainty in crop model predictions: what is the role of users? Environmental Modelling & Software 81, 165173.CrossRefGoogle Scholar
Corbeels, M, Berre, D, Rusinamhodzi, L and Lopez-ridaura, S (2018) Can we use crop modelling for identifying climate change adaptation options ? Agricultural and Forest Meteorology 256–257, 4652.CrossRefGoogle Scholar
Davies, JA and McKay, DC (1988) Evaluation of selected models for estimating solar radiation on horizontal surfaces. Solar Energy 43, 153168.CrossRefGoogle Scholar
Dobos, L (2004) Listina registrovaných odrôd. Vestník Ministerstva pôdohospodárstva Slovenskej republiky (List of registered varieties. Bulletin of the Ministry of Agriculture of the Slovak Republic), p. 216.Google Scholar
Fox, DG (1981) Judging air quality model performance: a summary of the AMS workshop on dispersion model performance. Bulletin of the American Meteorological Society 62, 599609.2.0.CO;2>CrossRefGoogle Scholar
Fronzek, S, Pirttioja, N, Carter, TR, Bindi, M, Ho, H, Palosuo, T, Ruiz-ramos, M, Tao, F, Trnka, M, Acutis, M, Asseng, S, Baranowski, P, Basso, B, Bodin, P, Buis, S, Cammarano, D, Deligios, P, Destain, M, Dumont, B, Ewert, F, Ferrise, R, François, L, Gaiser, T, Hlavinka, P, Jacquemin, I, Christian, K, Kollas, C, Krzyszczak, J, Lorite, IJ, Minet, J, Minguez, MI, Montesino, M, Moriondo, M, Müller, C, Nendel, C, Öztürk, I, Perego, A, Rodríguez, A, Ruane, AC, Ruget, F, Sanna, M, Semenov, MA, Slawinski, C, Stratonovitch, P, Supit, I, Waha, K, Wang, E, Wu, L, Zhao, Z and Rötter, RP (2018) Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change. Agricultural systems 159, 209224.CrossRefGoogle Scholar
Gobin, A (2018) Weather related risks in Belgian arable agriculture. Agricultural Systems 159, 225236.CrossRefGoogle Scholar
Hansen, S, Jensen, HE, Nielsen, NE and Svendsen, H (1990) DAISY: Soil Plant Atmosphere System Model. NPO Report No. A 10. The National Agency for Environmental Protection, Copenhagen, 272 pp.Google Scholar
Hlavinka, P, Trnka, M, Balek, J, Semerádová, D, Hayes, M, Svoboda, M, Eitzinger, J, Možný, M, Fischer, M, Hunt, E and Žalud, Z (2011) Development and evaluation of the SoilClim model for water balance and soil climate estimates. Agricultural Water Management 98, 12491261.CrossRefGoogle Scholar
Hlavinka, P, Trnka, M, Kersebaum, KC, Čermák, P, Pohanková, E, Orság, M, Pokorný, E, Fischer, M, Brtnický, M and Žalud, Z (2014) Modelling of yields and soil nitrogen dynamics for crop rotations by HERMES under different climate and soil conditions in the Czech Republic. Journal of Agricultural Science 152, 188204.CrossRefGoogle Scholar
Hlavinka, P, Kersebaum, KC, Dubrovský, M, Fischer, M, Pohanková, E, Balek, J, Žalud, Z and Trnka, M (2015) Water balance, drought stress and yields for rainfed field crop rotations under present and future conditions in the Czech Republic. Climate Research 65, 175192.CrossRefGoogle Scholar
Holzworth, DP, Huth, NI, Peter, G, Zurcher, EJ, Herrmann, NI, Mclean, G, Chenu, K, Van Oosterom, EJ, Snow, V, Murphy, C, Moore, AD, Brown, H, Whish, JPM, Verrall, S, Fainges, J, Bell, LW, Peake, AS, Poulton, PL, Hochman, Z, Thorburn, PJ, Gaydon, DS, Dalgliesh, NP, Rodriguez, D, Cox, H, Chapman, S, Doherty, A, Teixeira, E, Sharp, J, Cichota, R, Vogeler, I, Li, FY, Wang, E, Hammer, GL, Robertson, MJ, Dimes, JP, Whitbread, AM, Hunt, J, Van Rees, H, Mcclelland, T, Carberry, PS, Hargreaves, JNG, Macleod, N, Mcdonald, C, Harsdorf, J, Wedgwood, S and Keating, BA (2014) Environmental modelling & software APSIM e evolution towards a new generation of agricultural systems. Environmental Modelling and Software 62, 327350.CrossRefGoogle Scholar
Hoogenboom, G, Jones, JW, Wilkens, PW, Porter, CH, Boote, KJ, Hunt, LA, Singh, U, Lizaso, JI, White, JW, Uryasev, O, Ogoshi, R, Koo, J, Shelia, V and Tsuji, GY (2015) Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.6. DSSAT Foundation, Prosser, Washington.Google Scholar
Jones, J, Hoogenboom, G, Porter, C, Boote, K, Batchelor, W, Hunt, L, Wilkens, P, Singh, U, Gijsman, A and Ritchie, J (2003) The DSSAT cropping system model. European Journal of Agronomy 18, 235265.CrossRefGoogle Scholar
Kersebaum, KC (2007) Modelling nitrogen dynamics in soil-crop systems with HERMES. Nutrient Cycling in Agroecosystems 77, 3952.CrossRefGoogle Scholar
Kersebaum, KC, Boote, KJ, Jorgenson, JS, Nendel, C, Bindi, M, Frühauf, C, Gaiser, T, Hoogenboom, G, Kollas, C, Olesen, JE, Rötter, RP, Ruget, F, Thorburn, PJ, Trnka, M and Wegehenkel, M (2015) Analysis and classification of data sets for calibration and validation of agro-ecosystem models. Environmental Modelling & Softwar 72, 402441.CrossRefGoogle Scholar
Kollas, C, Kersebaum, KC, Nendel, C, Manevski, K, Müller, C, Palosuo, T, Armas-Herrera, CM, Beaudoin, N, Bindi, M, Charfeddine, M, Conradt, T, Constantin, J, Eitzinger, J, Ewert, F, Ferrise, R, Gaiser, T, De Cortazar-Atauri, IG, Giglio, L, Hlavinka, P, Hoffmann, H, Hoffmann, MP, Launay, M, Manderscheid, R, Mary, B, Mirschel, W, Moriondo, M, Olesen, JE, Öztürk, I, Pacholski, A, Ripoche-Wachter, D, Roggero, PP, Roncossek, S, Rötter, RP, Ruget, F, Sharif, B, Trnka, M, Ventrella, D, Waha, K, Wegehenkel, M, Weigel, H-J and Wu, L (2015) Crop rotation modelling – a European model intercomparison. European Journal of Agronomy 70, 98111.CrossRefGoogle Scholar
Legates, DR and McCabe, GJ Jr (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research 35, 233241.CrossRefGoogle Scholar
Martre, P, Wallach, D, Asseng, S, Ewert, F, Jones, JW, Rötter, RP, Boote, KJ, Ruane, AC, Thorburn, PJ, Cammarano, D, Hatfield, JL, Rosenzweig, C, Aggarwal, PK, Angulo, C, Basso, B, Bertuzzi, P, Biernath, C, Brisson, N, Challinor, AJ, Doltra, J, Gayler, S, Goldberg, R, Grant, RF, Heng, L, Hooker, J, Hunt, LA, Ingwersen, J, Izaurralde, RC, Kersebaum, KC, Müller, C, Kumar, SN, Nendel, C, o'Leary, G, Olesen, JE, Osborne, TM, Palosuo, T, Priesack, E, Ripoche, D, Semenov, MA, Shcherbak, I, Steduto, P, Stöckle, CO, Stratonovitch, P, Streck, T, Supit, I, Tao, F, Travasso, M, Waha, K, White, JW and Wolf, J (2015) Multimodel ensembles of wheat growth: many models are better than one. Global Change Biology 21, 911925.CrossRefGoogle ScholarPubMed
Nendel, C, Berg, M, Kersebaum, KC, Mirschel, W, Specka, X, Wegehenkel, M, Wenkel, KO and Wieland, R (2011) The MONICA model: testing predictability for crop growth, soil moisture and nitrogen dynamics. Ecological Modelling 222, 16141625.CrossRefGoogle Scholar
Nendel, C, Wieland, R, Mirschel, W, Specka, X, Guddat, C and Kersebaum, KC (2013) Simulating regional winter wheat yields using input data of different spatial resolution. Field Crop Research 145, 6777.CrossRefGoogle Scholar
Olesen, JE, Askegaard, M and Rasmussen, IA (2000) Design of an organic farming crop-rotation experiment. Acta Agriculturae Scandinavica, Section B – Soil & Plant Science 50, 1321.Google Scholar
Orlandini, S, Nejedlik, P, Eitzinger, J, Alexandrov, V, Toulios, L, Calanca, P, Trnka, M and Olesen, JE (2008) Impacts of climate change and variability on European agriculture: results of inventory analysis in COST 734 countries. Annals of the New York Academy of Sciences 1146, 338–333.CrossRefGoogle ScholarPubMed
Palosuo, T, Kersebaum, KC, Angulo, C, Hlavinka, P, Moriondo, M, Olesen, J, Patil, R, Ruget, F, Rumbaur, C, Takac, J, Trnka, M, Bindi, M, Caldag, B, Ewert, F, Ferrise, R, Mirschel, W, Saylan, L, Siska, B and Rötter, R (2011) Simulation of winter wheat yield and its variability in different climates of Europe: a comparison of eight crop growth models. European Journal of Agronomy 35, 103114.CrossRefGoogle Scholar
Pirttioja, N, Carter, TR, Fronzek, S, Bindi, M, Hoffmann, H, Palosuo, T, Ruiz-Ramos, M, Tao, F, Trnka, M, Acutis, M, Asseng, S, Baranowski, P, Basso, B, Bodin, P, Buis, S, Cammarano, D, Deligios, P, Destain, M-F, Dumont, B, Ewert, F, Ferrise, R, Francois, L, Gaiser, T, Hlavinka, P, Jacquemin, I, Kersebaum, KC, Kollas, C, Krzyszczak, J, Lorite, IJ, Minet, J, Minguez, MI, Montesino, M, Moriondo, M, Muller, C, Nendel, C, Öztürk, I, Perego, A, Rodríguez, A, Ruane, AC, Ruget, F, Sanna, M, Semenov, MA, Slawinski, C, Stratonovitch, P, Supit, I, Waha, K, Wang, E, Wu, L, Zhao, Z and Rötter, RP (2015) A crop model ensemble analysis of temperature and precipitation effects on wheat yield across a European transect using impact response surfaces. Climate Research 65, 87105.CrossRefGoogle Scholar
Poluektov, RA, Fintushal, SM, Oparina, IV, Shatskikh, DV, Terlleev, VV and Zakharova, ET (2002) AGROTOOL – a system for crop simulation. Archiv für Acker- und Pflanzenbau und Bodenkunde 48, 609635.Google Scholar
Ritchie, JT (1981) Water dynamics in the soil-plant-atmosphere system. Plant and Soil 58, 8196.CrossRefGoogle Scholar
Rodríguez, A, Ruiz-ramos, M, Palosuo, T, Carter, TR, Fronzek, S, Lorite, IJ, Ferrise, R, Pirttioja, N, Bindi, M, Baranowski, P, Buis, S, Cammarano, D, Chen, Y, Dumont, B, Ewert, F, Gaiser, T, Hlavinka, P, Ho, H, Höhn, JG, Jurecka, F, Kersebaum, KC, Trnka, M, De Wit, A and Rötter, RP (2018) Implications of crop model ensemble size and composition for estimates of adaptation effects and agreement of recommendations. Agricultural and Forest Meteorology 264, 351362.CrossRefGoogle Scholar
Rötter, RP, Carter, TR, Olesen, JE and Porter, JR (2011) Crop – climate models need an overhaul. Nature Climate Change 1, 175177.CrossRefGoogle Scholar
Rötter, RP, Palosuo, T, Christian, K, Angulo, C, Bindi, M, Ewert, F, Ferrise, R, Hlavinka, P, Moriondo, M, Nendel, C and Olesen, JE (2012) Simulation of spring barley yield in different climatic zones of Northern and Central Europe: a comparison of nine crop models. Field Crop Research 133, 2336.CrossRefGoogle Scholar
Rötter, RP, Appiah, M, Fichtler, E, Kersebaum, KC, Trnka, M and Ho, MP (2018) Linking modelling and experimentation to better capture crop impacts of agroclimatic extremes – a review. Field Crop Research 221, 142156.CrossRefGoogle Scholar
Ruiz-ramos, M, Ferrise, R, Rodríguez, A, Lorite, IJ, Bindi, M, Carter, TR, Fronzek, S, Palosuo, T, Pirttioja, N, Baranowski, P, Buis, S, Cammarano, D, Chen, Y, Dumont, B, Ewert, F, Gaiser, T, Hlavinka, P, Hoffmann, H, Höhn, JG, Jurecka, F, Kersebaum, KC, Krzyszczak, J, Lana, M, Mechiche-alami, A, Minet, J, Montesino, M, Nendel, C, Porter, JR, Ruget, F, Semenov, MA, Steinmetz, Z, Stratonovitch, P, Supit, I, Tao, F, Trnka, M, De Wit, A and Rötter, RP (2018) Adaptation response surfaces for managing wheat under perturbed climate and CO2 in a Mediterranean environment. Agricultural Systems 159, 260274.CrossRefGoogle Scholar
Salo, TJ, Palosuo, T, Kersebaum, KC, Nendel, C, Angulo, C, Ewert, F, Bindi, M, Calanca, P, Klein, T, Moriondo, M, Ferrise, R, Olesen, JE, Patil, RH, Ruget, F, Takáč, J, Hlavinka, P, Trnka, M and Rötter, RP (2016) Comparing the performance of 11 crop simulation models in predicting yield response to nitrogen fertilization. Journal of Agricultural Science 154, 12181240.CrossRefGoogle Scholar
Soltani, A and Sinclair, TR (2015) A comparison of four wheat models with respect to robustness and transparency: simulation in a temperate, sub-humid environment. Field Crop Research 175, 3746.CrossRefGoogle Scholar
Steduto, P, Hsiao, TC, Raes, D and Fereres, E (2009) AquaCrop: the FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal 101, 426437.CrossRefGoogle Scholar
Stöckle, CO, Donatelli, M and Nelson, R (2003) CropSyst, a cropping systems simulation model. European Journal of Agronomy 18, 289307.CrossRefGoogle Scholar
Wallach, D, Mearns, LO, Ruane, AC, Rötter, RP and Asseng, S (2016) Lessons from climate modeling on the design and use of ensembles for crop modeling. Climate Change 139, 551564.CrossRefGoogle ScholarPubMed
Wallach, D, Martre, P, Liu, B, Asseng, S, Ewert, F, Thorburn, PJ, van Ittersum, M, Aggarwal, PK, Ahmed, M, Basso, B, Biernath, C, Cammarano, D, Challinor, AJ, De Sanctis, G, Dumont, B, Rezaei, EE, Fereres, E, Fitzgerald, GJ, Gao, Y, Garcia-Vila, M, Gayler, S, Girousse, C, Hoogenboom, G, Horan, H, Izaurralde, RC, Jones, CD, Kassie, BT, Kersebaum, KC, Klein, C, Koehler, AK, Maiorano, A, Minoli, S, Müller, C, Naresh Kumar, S, Nendel, C, O'Leary, GJ, Palosuo, T, Priesack, E, Ripoche, D, Rötter, RP, Semenov, MA, Stöckle, C, Stratonovitch, P, Streck, T, Supit, I, Tao, F, Wolf, J and Zhang, Z (2018) Multi-model ensembles improve predictions of crop-environment-management interactions. Global Change Biology 24, 50725083.CrossRefGoogle Scholar
Wallor, E, Kersebaum, KC, Ventrella, D, Bindi, M, Cammarano, D, Coucheney, E, Gaiser, T, Garofalo, P, Giglio, L, Giola, P, Hoffmann, MP, Iocola, I, Lana, M, Lewan, E, Maharjan, GR, Moriondo, M, Mula, L, Nendel, C, Pohankova, E, Roggero, PP, Trnka, M and Trombi, G (2018) The response of process-based agro-ecosystem models to within-field variability in site conditions. Field Crops Research 228, 119.CrossRefGoogle Scholar
Williams, JR, Jones, CA, Kiniry, JR and Spanel, DA (1989) The EPIC crop growth model. Transactions of the ASAE 32, e511.CrossRefGoogle Scholar
Willmott, CJ (1982) Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society 64, 13091313.2.0.CO;2>CrossRefGoogle Scholar
Zhao, G, Hoffmann, H, Yeluripati, J, Specka, X, Nendel, C, Coucheney, E, Kuhnert, M, Tao, F, Constantin, J, Raynal, H, Teixeira, E, Grosz, B, Doro, L, Kiese, R, Eckersten, H, Haas, E, Cammarano, D, Kassie, B, Moriondo, M, Trombi, G, Bindi, M, Biernath, C, Heinlein, F, Klein, C, Priesack, E, Lewan, E, Kersebaum, KC, Rötter, RP, Roggero, PP, Wallach, D, Asseng, S, Siebert, S, Gaiser, T and Ewert, F (2016) Evaluating the precision of eight spatial sampling schemes in estimating regional means of simulated yield for two crops. Environmental Modelling and Software 80, 100112.CrossRefGoogle Scholar
Supplementary material: File

Kostková et al. supplementary material

Kostková et al. supplementary material

Download Kostková et al. supplementary material(File)
File 14 MB

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Performance of 13 crop simulation models and their ensemble for simulating four field crops in Central Europe
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Performance of 13 crop simulation models and their ensemble for simulating four field crops in Central Europe
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Performance of 13 crop simulation models and their ensemble for simulating four field crops in Central Europe
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *