Hostname: page-component-cc8bf7c57-5wl6q Total loading time: 0 Render date: 2024-12-11T05:38:38.006Z Has data issue: false hasContentIssue false

Genetic variation for wheat spike fertility in cultivars and early breeding materials

Published online by Cambridge University Press:  08 January 2015

N. E. MIRABELLA
Affiliation:
Unidad Integrada Balcarce (Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata and Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria), CC 276 (7620) Balcarce, Buenos Aires, Argentina Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Balcarce, Argentina
P. E. ABBATE
Affiliation:
Unidad Integrada Balcarce (Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata and Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria), CC 276 (7620) Balcarce, Buenos Aires, Argentina
I. A. RAMIREZ
Affiliation:
Unidad Integrada Balcarce (Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata and Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria), CC 276 (7620) Balcarce, Buenos Aires, Argentina Monsanto's Beachell-Borlaug International Scholarship Program, Balcarce, Argentina
A. C. PONTAROLI*
Affiliation:
Unidad Integrada Balcarce (Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata and Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria), CC 276 (7620) Balcarce, Buenos Aires, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas, Balcarce, Argentina
*
*To whom all correspondence should be addressed. Email: pontaroli.ana@inta.gob.ar

Summary

Grain yield in bread wheat is often tightly associated with grain number/m2. In turn, spike fertility (SF), i.e., the quotient between grain number and spike chaff dry weight, accounts for a great proportion of the variation in grain number among cultivars. In order to examine the potential use of SF as a breeding target, (1) variation for the trait was assessed in six datasets combining commercial cultivars under different environmental conditions, (2) trait heritability was estimated in a set of F1 hybrids derived from controlled crosses between cultivars with contrasting SF and (3) SF distribution pattern was analysed in two F2 segregating populations. Analysis of commercial cultivars revealed considerable variation for SF, under both optimal and sub-optimal conditions. In addition, genotypic variation was consistently larger than genotype × environment interaction variation in all datasets. Narrow sense heritability, estimated by the mid-parent-offspring regression of 20 F1 hybrids and their respective parents, was 0·63. Data from two F2 populations exhibited bell-shaped and symmetric frequency distributions of SF, with a SF mean intermediate between the parental values. Substantial transgressive segregation was detected in both F2 populations. In conclusion, SF appears to be a heritable trait with predominantly additive effects. This warrants further investigation on the feasibility of using SF as an early selection criterion in wheat breeding programs aimed at increasing grain yield.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Austin, R. B. (1982). Crop characteristics and the potential yield of wheat. Journal of Agricultural Science, Cambridge 98, 447453.CrossRefGoogle Scholar
Abbate, P. E. & Demotes-Mainard, S. (2001). Potential yield of Argentinean and European wheat cultivars in Balcarce and Grignon. In 5th Congreso Nacional de Trigo (Eds Nisi, J. E. & Rubiolo, O. J.), pp. 77–76. Villa Carlos Paz, Córdoba, Argentina: INTA.Google Scholar
Abbate, P. E., Andrade, F. H., Culot, J. P. & Bindraban, P. S. (1997). Grain yield in wheat: effects of radiation during spike growth period. Field Crops Research 54, 245257.CrossRefGoogle Scholar
Abbate, P. E., Andrade, F. H., Lázaro, L., Bariffi, J. H., Berardocco, H. G., Inza, V. H. & Marturano, F. (1998). Grain yield increase in recent Argentine wheat cultivars. Crop Science 38, 12031209.CrossRefGoogle Scholar
Abbate, P. E., Lázaro, L., Montenegro, A. A., Bariffi, J. H., & Gutheim, F. (2005). Potential yield of Argentine vs. foreign wheat cultivars. In Wheat Production in Stressed Environments; Proceedings of the 7th International Wheat Conference, November 27–December 2, 2005, Mar del Plata, Argentina (Eds Buck, H. T., Nisi, J. E. & Salomón, N.), pp. 1–2. Developments in Plant Breeding Vol. 12. Dordrecht, The Netherlands: Springer.Google Scholar
Abbate, P. E., López, J. R., Brach, A. M., Gutheim, F. & Gonzalez, F. (2007). Fertilidad de las espigas de trigo en ambientes sub-potenciales. In Workshop Internacional: Ecofisiología Vegetal Aplicada al Estudio de la Determinación del Rendimiento y la Calidad de los Cultivos de Granos. Mar del Plata, Buenos Aires, Argentina, September 6–7, 2007 (Eds Kruk, B. & Serrago, R.), pp. 2–3. Buenos Aires, Argentina: FAUBA.Google Scholar
Abbate, P. E., Pontaroli, A. C., Lázaro, L. & Gutheim, F. (2013). A method of screening for spike fertility in wheat. Journal of Agricultural Science, Cambridge 151, 322330.CrossRefGoogle Scholar
Acreche, M. M., Briceño-Félix, G., Sánchez, J. A. M. & Slafer, G. A. (2008). Physiological bases of genetic gains in Mediterranean bread wheat yield in Spain. European Journal of Agronomy 28, 162170.CrossRefGoogle Scholar
Andrade, F. H., Sala, R. G., Pontaroli, A. C. & León, A. (2009). Integration of biotechnology, plant breeding and crop physiology: dealing with complex interactions from a physiological perspective. In Crop Physiology: Applications for Genetic Improvement and Agronomy (Eds Sadras, V. O. & Calderini, D. F.), pp. 267273. New York: Elsevier Science.CrossRefGoogle Scholar
Annicchiarico, P. (2002). Genotype × Environment Interactions: Challenges and Opportunities for Plant Breeding and Cultivar Recommendations. Plant Production and Protection Paper 174. Rome: FAO.Google Scholar
Casler, M. D. (1982). Genotype × environment interaction bias to parent-offspring regression heritability estimates. Crop Science 22, 540542.CrossRefGoogle Scholar
Cantarero, M., Dardanelli, J. & Badiali, O. (1998). Factores ambientales que determinan el rendimiento potencial en trigo. In Riego y Agricultura de Precisión (Ed. INTA Manfredi), pp. 1626. Córdoba, Argentina: EEA INTA Manfredi.Google Scholar
Fehr, W. R. (1987). Principles of Cultivar Development. Volume 1. Theory and Technique. New York: Macmillan Publishing Co.Google Scholar
Fischer, R. A. (1984). Growth and yield of wheat. In Potential Productivity of Field Crops under Different Environments (Eds Smith, W. H. & Banta, S. J.), pp. 129154. Los Baños, Philippines: IRRI.Google Scholar
Fischer, R. A. (2007). Understanding the physiological basis of yield potential in wheat. Journal of Agricultural Science, Cambridge 145, 99113.CrossRefGoogle Scholar
Fischer, R. A. (2011). Wheat physiology: a review of recent developments. Crop and Pasture Science 62, 95114.CrossRefGoogle Scholar
Foulkes, M. J., Slafer, G. A., Davies, W. J., Berry, P. M., Sylvester-Bradley, R., Martre, P., Calderini, D. F., Griffiths, S. & Reynolds, M. P. (2011). Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. Journal of Experimental Botany 62, 469486.CrossRefGoogle ScholarPubMed
Frey, K. J. & Horner, T. (1957). Heritability in standard units. Agronomy Journal 49, 5962.CrossRefGoogle Scholar
González, F. G., Terrile, I. I. & Falcón, M. O. (2011). Spike fertility and duration of stem elongation as promising traits to improve potential grain number (and yield): variation in modern Argentinean wheat. Crop Science 51, 16931702.CrossRefGoogle Scholar
Lázaro, L. & Abbate, P. E. (2012). Cultivar effects on relationship between grain number and photothermal quotient or spike dry weight in wheat. Journal of Agricultural Science, Cambridge 150, 442459.CrossRefGoogle Scholar
Lush, J. L. (1940). Intra-sire correlations or regressions of offspring on dam as a method of estimating heritability of characteristics. Journal of Animal Science 1940, 293301.Google Scholar
Shearman, V. J., Scott, R. K. & Foulkes, M. J. (2005). Physiological processes associated with wheat yield progress in the UK. Crop Science 45, 175185.CrossRefGoogle Scholar
Slafer, G. A. & Andrade, F. H. (1989). Genetic improvement in bread wheat (Triticum aestivum) yield in Argentina. Field Crops Research 21, 289296.CrossRefGoogle Scholar
Slafer, G. A., Andrade, F. H. & Satorre, E. H. (1990). Genetic-improvement effects on pre-anthesis physiological attributes related to wheat grain-yield. Field Crops Research 23, 255263.CrossRefGoogle Scholar
Stapper, M. & Fischer, R. A. (1990). Genotype, sowing date and plant spacing influence on high-yielding irrigated wheat in Southern New South Wales. II. Growth, yield and nitrogen use. Australian Journal of Agricultural Research 41, 10211041.CrossRefGoogle Scholar
Zadoks, J. C., Chang, T. T. & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research 14, 415421.CrossRefGoogle Scholar