Skip to main content Accessibility help
×
Home
Hostname: page-component-7f7b94f6bd-82ts8 Total loading time: 0.276 Render date: 2022-06-28T09:28:54.260Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Further solutions to an isotope dilution model for partitioning phenylalanine and tyrosine between milk protein synthesis and other metabolic fates by the mammary gland of lactating dairy cows

Published online by Cambridge University Press:  11 May 2022

L. A. Crompton
Affiliation:
Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading RG6 6EU, UK
L. A. McKnight
Affiliation:
Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada Trouw Nutrition AgResearch Canada, 150 Research Lane, Guelph, ON N1G 4T2, Canada
C. K. Reynolds
Affiliation:
Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading RG6 6EU, UK
J. L. Ellis
Affiliation:
Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
J. Dijkstra
Affiliation:
Animal Nutrition Group, Wageningen University & Research, 6700 AH Wageningen, The Netherlands
J. France*
Affiliation:
Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
*
Author for correspondence: J. France, E-mail: jfrance@uoguelph.ca

Abstract

Phenylalanine (PHE) and to a lesser extent TYR are two commonly used amino acid tracers for measuring protein metabolism in a variety of species and tissues. The model examined in this paper was developed to resolve trans-organ and stable isotope dilution data collected from experiments with lactating dairy cows using these tracers. Two methods of solving the model, i.e. as two four-pool submodels, one representing PHE and the other TYR, or as an integrated eight-pool model, are investigated and the alternative solutions are contrasted. Solving the model as the two four-pool submodels rather than the integrated 8-pool model is preferred as the equations are slightly simpler and their application less susceptible to any compounding of measurement errors. The data used to illustrate the model were taken from experiments conducted to investigate the effects of high and low protein diets on the partitioning of PHE and TYR between milk protein synthesis and other metabolic fates by the mammary gland.

Type
Animal Research Paper
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baracos, V, Brun-Bellut, J and Marie, M (1991) Tissue protein synthesis in lactating and dry goats. British Journal of Nutrition 66, 451465.CrossRefGoogle ScholarPubMed
Bequette, BJ, Backwell, FRC, Kyle, CE, Calder, AG, Buchan, V, Crompton, LA, France, J and MacRae, JC (1999) Vascular sources of phenylalanine, tyrosine, lysine and methionine for casein synthesis in lactating goats. Journal of Dairy Science 82, 362377.CrossRefGoogle ScholarPubMed
Bequette, BJ, Kyle, CE, Crompton, LA, Anderson, SE and Hanigan, MD (2002) Protein metabolism in lactating goats subjected to the insulin clamp. Journal of Dairy Science 85, 15461555.CrossRefGoogle Scholar
Cant, JP, DePeters, EJ and Baldwin, RL (1993) Mammary amino acid utilization in dairy cows fed fat and its relationship to milk protein depression. Journal of Dairy Science 76, 762774.CrossRefGoogle ScholarPubMed
Crompton, LA, France, J, Reynolds, CK, Mills, JAN, Hanigan, MD, Ellis, JL and Dijkstra, J (2014) An isotope dilution model for partitioning phenylalanine and tyrosine uptake by the mammary gland of lactating dairy cows. Journal of Theoretical Biology 359, 5460.CrossRefGoogle ScholarPubMed
Dijkstra, J, Oenema, O, van Groenigen, JW, Spek, JW, van Vuuren, AM and Bannink, A (2013) Diet effects on urine composition of cattle and N2O emissions. Animal 7(Suppl. 2), 292302.CrossRefGoogle ScholarPubMed
France, J, Bequette, BJ, Lobley, GE, Metcalf, JA, Wray-Cahen, D, Dhanoa, MS, Backwell, FRC, Hanigan, MD, MacRae, JC and Beever, DE (1995) An isotope dilution for partitioning leucine uptake by the bovine mammary gland. Journal of Theoretical Biology 172, 369377.CrossRefGoogle Scholar
Hanigan, MD, Calvert, CC, De Peters, EJ, Reis, BL and Baldwin, RL (1991) Whole blood and plasma amino acid uptakes by lactating bovine mammary glands. Journal of Dairy Science 74, 24842490.CrossRefGoogle ScholarPubMed
Huang, X, Yoder, PS, Teixeira, IAMA and Hanigan, MD (2021) Assessing amino acid uptake and metabolism in mammary glands of lactating dairy cows intravenously infused with methionine, lysine, and histidine or with leucine and isoleucine. Journal of Dairy Science 104, 30323051.CrossRefGoogle ScholarPubMed
Jorgensen, GN and Larson, BL (1968) Conversion of phenylalanine to tyrosine in the bovine mammary secretory cell. Biochimica et Biophysica Acta 165, 121126.CrossRefGoogle ScholarPubMed
Lapierre, H, Lobley, GE, Doepel, L, Raggio, G, Rulquin, H and Lemosquet, S (2012) Mammary metabolism of amino acids in dairy cows. Journal of Animal Science 90, 17081721.CrossRefGoogle ScholarPubMed
Larson, BL (1979) Biosynthesis and secretion of milk proteins: a review. Journal of Dairy Research 46, 161174.CrossRefGoogle ScholarPubMed
Lemosquet, S, Lobley, GE, Koopman, R, Van Loon, LJC, Kies, AK and Lapierre, H (2010) A large supply of phenylalanine is not oxidized by the mammary gland of dairy cows. Energy and Protein Metabolism and Nutrition in Sustainable Animal Production (Ed GM Crovetto), EAAP Publication No. 134. Wageningen, the Netherlands: Wageningen Academic Publishers, pp. 137138.Google Scholar
Lobley, GE (2003) Protein turnover - what does it mean for animal production? Canadian Journal of Animal Science 83, 327340.CrossRefGoogle Scholar
Maas, JA, France, J and McBride, BW (1997) A mechanistic model of milk protein synthesis in the lactating bovine mammary gland. Journal of Theoretical Biology 187, 363378.CrossRefGoogle ScholarPubMed
Mackle, TR, Dwyer, DA, Ingvartsen, KL, Chouinard, PY, Ross, DA and Bauman, DE (2000) Effects of insulin and postruminal supply of protein on use of amino acids by the mammary gland for milk protein synthesis. Journal of Dairy Science 83, 93105.CrossRefGoogle ScholarPubMed
Mehaia, MA and Al-Kanhal, MA (1992) Taurine and other free amino acids in milk of camel, goat, cow and man. Milchwissenschaft 47, 351353.Google Scholar
Miller, MJS, Witherly, SA and Clark, DA (1990) Casein: a milk protein with diverse biologic consequences. Proceedings of the Society for Experimental Biology 195, 143159.CrossRefGoogle ScholarPubMed
National Academies of Science, Engineering and Medicine (NASEM) (2021) Nutrient Requirements of Dairy Cattle, 8th ed. Washington, DC, USA: National Academy Press, 502 pp.Google Scholar
Nichols, K, Bannink, A, Doelman, J and Dijkstra, J (2019a) Mammary gland metabolite utilization in response to exogenous glucose or long-chain fatty acids at low and high metabolizable protein levels. Journal of Dairy Science 102, 71507167.CrossRefGoogle Scholar
Nichols, K, Bannink, A and Dijkstra, J (2019b) Energy and nitrogen balance of dairy cattle as affected by provision of different essential amino acid profiles at the same metabolizable protein supply. Journal of Dairy Science 102, 89638976.CrossRefGoogle Scholar
Oddy, VH, Lindsay, DB and Fleet, LR (1988) Protein synthesis and degradation in the mammary gland of goats. Journal of Dairy Research 55, 143154.CrossRefGoogle ScholarPubMed
Raggio, G, Lemosquet, S, Lobley, GE, Rulquin, H and Lapierre, H (2006) Effect of casein and propionate supply on mammary protein metabolism in lactating dairy cows. Journal of Dairy Science 89, 43404351.CrossRefGoogle ScholarPubMed
Razooki Hasan, H, White, DA and Mayer, RJ (1982) Extensive destruction of newly synthesized casein in mammary explants in organ culture. Biochemical Journal 202, 133138.CrossRefGoogle ScholarPubMed
Roets, E, Massart-Leen, A-M, Verbeke, R and Peeters, G (1983) Metabolism of leucine by the isolated perfused goat udder. Journal of Dairy Research 50, 413424.CrossRefGoogle ScholarPubMed
Thomas, C (2004) Feed into Milk - A New Applied Feeding System for Dairy Cows. Nottingham, UK: Nottingham University Press, 68 pp.Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Further solutions to an isotope dilution model for partitioning phenylalanine and tyrosine between milk protein synthesis and other metabolic fates by the mammary gland of lactating dairy cows
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Further solutions to an isotope dilution model for partitioning phenylalanine and tyrosine between milk protein synthesis and other metabolic fates by the mammary gland of lactating dairy cows
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Further solutions to an isotope dilution model for partitioning phenylalanine and tyrosine between milk protein synthesis and other metabolic fates by the mammary gland of lactating dairy cows
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *