Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-rfl4x Total loading time: 0.212 Render date: 2021-09-24T04:18:54.090Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Development of interspecific hybrids of cassava and paternity analysis with molecular markers

Published online by Cambridge University Press:  10 December 2012

L. DE J. VIEIRA
Affiliation:
Universidade Federal do Recôncavo da Bahia, Cruz das Almas, BA, Brazil
L. F. DE Q. TAVARES FILHO
Affiliation:
Universidade Federal do Recôncavo da Bahia, Cruz das Almas, BA, Brazil
F. V. D. SOUZA
Affiliation:
Embrapa Mandioca e Fruticultura, Cruz das Almas, BA, Brazil
A. A. C. ALVES
Affiliation:
Embrapa Labex-USA, USDA-ARS National Center for Genetic Resources Preservation, Fort Collins, CO, USA
E. J. DE OLIVEIRA*
Affiliation:
Embrapa Mandioca e Fruticultura, Cruz das Almas, BA, Brazil
*
*To whom all correspondence should be addressed. Email: eder@cnpmf.embrapa.br

Summary

The present paper demonstrates the development of interspecific hybrids between Manihot esculenta Crantz ssp. esculenta (Mee) and M. esculenta Crantz ssp. flabellifolia (Mef) and paternity analysis using microsatellite markers [simple sequence repeat (SSR)]. Three Mef accessions (FLA005, FLA025V and FLA029V) were used for crosses with varieties of Mee: Saracura, Aipim Bravo, COL 1725, Aipim Rosa, Abóbora, Paraná and PER334. The paternity of the interspecific hybrids was investigated using 24 SSRs. The observed heterozygosity (Ho), polymorphic information content (PIC), probability of identity (PI) and paternity exclusion (PE) were evaluated. The rate of breeding success varied from 17 to 92%, and an average of two pollinations were required for each generated hybrid plant. The Ho value ranged from 0·11 to 0·92, and the PIC value ranged from 0·12 to 0·59. The uneven distribution of allele frequencies was accompanied by a high PI average (0·56). However, the combined PE for 21 loci was 0·99, which allows for the determination of the paternity of the hybrids with good discriminatory power. Of the 74 hybrids evaluated, 0·82 had their paternity confirmed using microsatellite markers. Discriminant analysis of principal components (DAPC) indicated the presence of eight clusters, of which, one was composed of only Mef varieties and the supposed hybrid Fla52Sar-H7, which was a product of apomixis. The parent Mee and hybrids were allocated in the other seven clusters. The data obtained demonstrate that SSR markers can be routinely used in breeding programmes to verify the paternity of interspecific crosses of cassava.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akinbo, O., Labuschagne, M. & Fregene, M. A. (2010). Embryo rescue as a method to develop and multiply a backcross population of cassava (Manihot esculenta Crantz) from an interspecific cross of Manihot esculenta ssp. flabellifolia. African Journal of Biotechnology 9, 70587062.Google Scholar
Akinbo, O., Labuschagne, M. & Fregene, M. A. (2012). Increased storage protein from interspecific F1 hybrids between cassava (Manihot esculenta Crantz) and its wild progenitor (M. esculenta ssp. flabellifolia). Euphytica 185, 303311.CrossRefGoogle Scholar
Allem, A. C. (1994). The origin of Manihot esculenta Crantz (Euphorbiaceae). Genetic Resources and Crop Evolution 41, 133150.CrossRefGoogle Scholar
Allem, A. C., Mendes, R. A., Salomão, A. N. & Burle, M. L. (2001). The primary gene pool of cassava (Manihot esculenta Crantz subspecies esculenta, Euphorbiaceae). Euphytica 120, 127132.CrossRefGoogle Scholar
Allem, A. C. (2002). The origin and taxonomy of cassava. In Cassava: Biology, Production and Utilization (Eds Hillocks, R. J., Thresh, M. J. & Bellotti, A. C.), pp. 115. Wallingford, UK: CABI.Google Scholar
Asare, P. A., Galyuon, I. K. A., Sarfo, J. K. & Tetteh, J. P. (2011). Morphological and molecular based diversity studies of some cassava (Manihot esculenta Crantz) germplasm in Ghana. African Journal of Biotechnology 10, 1390013908.Google Scholar
Bashaw, E. C. (1980). Apomixis and its application in crop improvement. In Hybridization of Crop Plants (Eds Fehr, W. R & Hadley, H. H.), pp. 4563, Madison, WI: American Society of Agronomy/Crop Science Society of America.Google Scholar
Botstein, D., White, R. L., Skolnick, M. & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics 32, 314331.Google ScholarPubMed
Bowers, J. E. & Meredith, C. P. (1997). The parentage of a classic wine grape, Cabernet Sauvignon. Nature Genetics 16, 8487.CrossRefGoogle ScholarPubMed
Brookfield, J. F. Y. (1996). A simple new method for estimating null allele frequency from heterozygote deficiency. Molecular Ecology 5, 453455.CrossRefGoogle ScholarPubMed
Calatayud, P. A., Polania, M. A., Seligmann, C. D. & Bellotti, A. C. (2002). Influence of water-stressed cassava on Phenacoccus herreni and three associated parasitoids. Entomologia Experimentalis et Applicata 102, 163175.CrossRefGoogle Scholar
Campinhos, E. N., Peters-Robinson, I., Bertolucci, F. L. & Alfenas, A. C. (1998). Interspecific hybridization and inbreeding effect in seed from a Eucalyptus grandis×Eucalyptus urophylla clonal orchard in Brazil. Genetics and Molecular Biology 21, 369374.CrossRefGoogle Scholar
Carabalí, A., Bellotti, A. C., Montoya Lerma, J. & Fregene, M. (2010). Manihot flabellifolia Pohl, wild source of resistance to the whitefly Aleurotrachelus socialis Bondar (Hemiptera, Aleyrodidae). Crop Protection 29, 3438.CrossRefGoogle Scholar
Carneiro, V. T. C. & Dusí, D. M. A. (2002). Apomixia: Em busca de tecnologias de clonagem de plantas por sementes. Biotecnologia Ciência & Desenvolvimento 25, 3642.Google Scholar
Ceballos, H., Sánchez, T., Chávez, A. L., Iglesias, C., Debouck, D., Mafle, G. & Thome, T. (2006). Variation in crude protein content in cassava (Manihot esculenta Crantz) roots. Journal of Food Composition and Analysis 19, 589593.CrossRefGoogle Scholar
Chávez, A. L., Sánchez, T., Jaramillo, G., Bedoya, J. M., Echeverry, J., Bolaños, E. A., Ceballos, H. & Iglesias, C. A. (2005). Variation of quality traits in cassava evaluated in landraces and improved clones. Euphytica 143, 125133.CrossRefGoogle Scholar
CIAT. (2003). Improved Cassava for the Developing World. Annual Report 2003. Cali, Colombia: CIAT.Google Scholar
Colombo, C., Second, G. & Charrier, A. (2000). Diversity within American cassava germplasm based on RAPD markers. Genetics and Molecular Biology 23, 189199.CrossRefGoogle Scholar
Díaz, A., De La Rosa, R., Rallo, P., Muñoz-Díez, C., Trujillo, I., Barranco, D., Martìn, A. & Belaj, A. (2007). Selections of an olive breeding program identified by microsatellite markers. Crop Science 47, 23172322.CrossRefGoogle Scholar
Food and Agriculture Organization of the United Nations (2010). Cassava Diseases in Africa: a Major Threat to Food Security. Cassava Diseases in Central, Eastern and Southern Africa (CaCESA) – Strategic Programme Framework 2010–2015. Rome: FAO. Available online at http://www.fao.org/fileadmin/templates/fcc/documents/CaCESA_EN.pdf (accessed 8 August 2012).Google Scholar
Ferreira, M. E. & Grattapaglia, D. (1998). Introdução ao uso de marcadores moleculares em análise genética. Brasília: EMBRAPA-CENARGEN.Google Scholar
Fregene, M. A., Vargas, J., Ikea, J., Angel, F., Tohme, J., Asiedu, R. A., Akoroda, M. O. & Roca, W. M. (1994). Variability of chloroplast DNA and nuclear ribosomal DNA in cassava (Manihot esculenta Crantz) and its wild relatives. Theoretical and Applied Genetics 89, 719727.CrossRefGoogle ScholarPubMed
Fregene, M., Morante, N., Sánchez, T., Marin, J., Ospina, C., Barrera, E., Gutierrez, J., Guerrero, J., Bellotti, A., Santos, L., Alzate, A., Moreno, S. & Ceballos, H. (2006). Molecular markers for introgression of useful traits from wild Manihot relatives of cassava, marker-assisted selection (MAS) of disease and root quality traits. Journal of Root Crops 32, 131.Google Scholar
Fregene, M. A., Suárez, M., Mkumbira, J., Kulembeka, H., Ndedya, E., Kulaya, A., Mitchel, S., Gullberg, U., Rosling, H., Dixon, A. G. O., Dean, R. & Kresovich, S. (2003). Simple sequence repeat marker diversity in cassava landraces: genetic diversity and differentiation in an asexually propagated crop. Theoretical and Applied Genetics 107, 10831093.CrossRefGoogle Scholar
Grattapaglia, D., Ribeiro, V. J. & Rezende, G. D. S. P. (2004). Retrospective selection of elite parent trees using paternity testing with microsatellite markers: an alternative short term breeding tactic for Eucalyptus. Theoretical and Applied Genetics 109, 192199.CrossRefGoogle ScholarPubMed
Guo, W. Z., Wang, W., Zhou, B. L. & Zhang, T. Z. (2006). Cross-species transferability of G. arboreum-derived EST-SSRs in the diploid species of Gossypium. Theoretical and Applied Genetics 112, 15731581.CrossRefGoogle Scholar
Jennings, D. L. & Iglesias, C. (2002). Breeding for crop improvement. In Cassava: Biology, Production and Utilization (Eds Hillocks, R. J., Thresh, M. J. & Bellotti, A. C.), pp. 149166. Wallingford, UK: CABI.CrossRefGoogle Scholar
Jombart, T., Devillard, S. & Balloux, F. (2010). Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics 11, 94. DOI: 10.1186/1471-2156-11-94.CrossRefGoogle ScholarPubMed
Kalia, R. K., Rai, M. K., Kalia, S., Singh, R. & Dhawan, A. K. (2011). Microsatellite markers: an overview of the recent progress in plants. Euphytica 177, 309334.CrossRefGoogle Scholar
Kawano, K. (2003). Thirty years of cassava breeding for productivity: biological and social factors for success. Crop Science 43, 13251335.CrossRefGoogle Scholar
Kunkeaw, S., Yoocha, T., Sraphet, S., Boonchanawiwat, A., Boonseng, O., Lightfoot, D., Triwitayakorn, K. & Tangphatsornruang, S. (2011). Construction of a genetic linkage map using simple sequence repeat markers from expressed sequence tags for cassava (Manihot esculenta Crantz). Molecular Breeding 27, 6775.CrossRefGoogle Scholar
Nassar, N. M. A. (1985). Manihot neusana Nassar, a new species native to Paraná, Brazil. Canadian Journal of Plant Science 65, 10971100.CrossRefGoogle Scholar
Nassar, N. M. A. (1989). Broadening the genetic base of cassava, Manihot esculenta Crantz by interspecific hybridization. Canadian Journal of Plant Science 69, 10711073.CrossRefGoogle Scholar
Nassar, N. M. A. (1995). Development of cassava interspecific hybrids for savanna (cerrado) conditions. Journal of Root Crops 22, 917.Google Scholar
Nassar, N. M. A. (2003 a). Gene flow between cassava, Manihot esculenta Crantz, and wild relatives. Genetics and Molecular Research 2, 334347.Google ScholarPubMed
Nassar, N. M. A. (2003 b). Is apomixis in cassava associated with aneuploidy? Gene Conserve 2, 106110.Google Scholar
Nassar, N. M. A. (2007). Cassava genetic resources and their utilization for breeding of the crop. Genetics and Molecular Research 6, 11511168.Google ScholarPubMed
Nassar, N. M. A. (2010). Dry matter content in cassava and interspecific hybridization. Genetics and Molecular Research 9, 608610.CrossRefGoogle ScholarPubMed
Nassar, N. M. A., Bomfim, N., Chaib, A., Abreu, L. F. A. & Gomes, P. T. C. (2010). Compatibility of interspecific Manihot crosses presaged by protein electrophoresis. Genetics and Molecular Research 9, 107112.CrossRefGoogle ScholarPubMed
Ojulong, H., Labuschangne, M. T., Herselman, L. & Fregene, M. (2008). Introgression of genes for dry matter content from wild cassava species. Euphytica 164, 163172.CrossRefGoogle Scholar
Okogbenin, E., Marin, J. & Fregene, M. (2006). An SSR-based molecular genetic map of cassava. Euphytica 147, 433440.CrossRefGoogle Scholar
Oliveira, E. J., Pádua, J. G., Zucchi, M. I., Vencovsky, R. & Vieira, M. L. C. (2006). Origin, evolution and genome distribution of microsatellites. Genetic and Molecular Biology 29, 294307.CrossRefGoogle Scholar
Olsen, K. M. & Schaal, B. A. (1999). Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proceedings of the National Academy of Sciences of the United States of America 96, 55865591.CrossRefGoogle ScholarPubMed
Olsen, K. M. & Schaal, B. A. (2001). Microsatellite variation in cassava (Manihot esculenta, Euphorbiaceae) and its wild relatives, further evidence for a southern Amazonian origin of domestication. American Journal of Botany 88, 131142.CrossRefGoogle ScholarPubMed
Olsen, K. M. (2004). SNPs, SSRs and inferences on cassava's origin. Plant Molecular Biology 56, 517526.CrossRefGoogle ScholarPubMed
Paetkau, D., Waits, L. P., Clarkson, P. L., Craighead, L., Vyse, E., Ward, R. & Strobeck, C. (1998). Variation in genetic diversity across the range of North American brown bears. Conservation Biology 12, 418429.CrossRefGoogle Scholar
Pujol, B., Muhlen, G., Garwood, W., Horoszowski, Y., Douzery, E. J. P. & Mckey, D. (2005). Evolution under domestication, contrasting functional morphology of seedlings in domesticated cassava and its closest wild relatives. New Phytologist 166, 305318.CrossRefGoogle ScholarPubMed
R Development Core Team (2010). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Raji, A. A., Anderson., J. V., Kolade, O. A., Ugwu, C. D., Dixon, A. G. O. & Ingelberecht, I. L. (2009). Gene-based microsatellites for cassava (Manihot esculenta Crantz): prevalence, polymorphisms, and cross-taxa utility. BMC Plant Biology 9, 118. DOI: 10.1186/1471-2229-9-118.CrossRefGoogle ScholarPubMed
Roa, A. C., Maya, M. M., Duque, M. C., Tphme, J., Allem, A. C. & Bonierbale, M. W. (1997). AFLP analysis of relationships among cassava and other Manihot species. Theoretical and Applied Genetics 95, 741750.CrossRefGoogle Scholar
Schuck, M. R., Biasi, L. A., Mariano, A. M., Lipski, B., Riaz, S. & Walker, M. A. (2011). Obtaining interspecific hybrids, and molecular analysis by microsatellite markers in grapevine. Pesquisa Agropecuária Brasileira 46, 14801488.CrossRefGoogle Scholar
Torres-Dini, D., Bennadji, Z., Cabrera, M., Centurion, C., Resquin, F. & Balmelli, G. (2011). Use of SSR-Tools for clone certification in Uruguayan Eucalyptus grandis and Eucalyptus dunnii breeding programs. BMC Proceedings 5 (Suppl. 7), 58.CrossRefGoogle Scholar
Weiler, R. L., Brugnara, E. C., Bastianel, M., Machado, M. A., Schifino-Wittmann, M. T., Souza, P. V. D. & Schwerz, S. F. (2009). Teste de paternidade e avaliações agronômicas de possíveis híbridos de tangerineira ‘sunki’. Scientia Agraria 10, 429435.CrossRefGoogle Scholar
3
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Development of interspecific hybrids of cassava and paternity analysis with molecular markers
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Development of interspecific hybrids of cassava and paternity analysis with molecular markers
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Development of interspecific hybrids of cassava and paternity analysis with molecular markers
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *