Skip to main content Accessibility help
×
Home
Hostname: page-component-6f6fcd54b-m8q6h Total loading time: 0.236 Render date: 2021-05-10T20:22:23.294Z Has data issue: true Feature Flags: {}

School attainment in childhood is an independent risk factor of dementia in late life: results from a Brazilian sample

Published online by Cambridge University Press:  04 August 2011

Ana Beatriz Costa Bezerra
Affiliation:
Centre for Alzheimer's Disease and Related Disorders, Institute of Psychiatry, Federal University of Rio de Janeiro, Brazil. State University of Rio de Janeiro, Brazil
Evandro Silva Freire Coutinho
Affiliation:
National School of Public Health – Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
Maria Lage Barca
Affiliation:
Centre for Alzheimer's Disease and Related Disorders, Institute of Psychiatry, Federal University of Rio de Janeiro, Brazil. State University of Rio de Janeiro, Brazil Norwegian Centre for Dementia Research, Centre for Ageing and Health, Department of Geriatric Medicine, Ullevaal University Hospital, and Faculty of Medicine, University of Oslo, Norway
Knut Engedal
Affiliation:
Norwegian Centre for Dementia Research, Centre for Ageing and Health, Department of Geriatric Medicine, Ullevaal University Hospital, and Faculty of Medicine, University of Oslo, Norway
Eliasz Engelhardt
Affiliation:
Centre for Alzheimer's Disease and Related Disorders, Institute of Psychiatry, Federal University of Rio de Janeiro, Brazil. State University of Rio de Janeiro, Brazil
Jerson Laks
Affiliation:
Centre for Alzheimer's Disease and Related Disorders, Institute of Psychiatry, Federal University of Rio de Janeiro, Brazil. State University of Rio de Janeiro, Brazil
Corresponding
E-mail address:

Abstract

Background: This study sought to assess whether lower school performance in childhood is a risk factor for dementia in old age.

Methods: Participants aged 60 years or more (n = 111) with documented proof from schools were included. Grades in three subjects – Portuguese, mathematics, and geography – were recorded and the mean final grade in all disciplines were assessed. Dementia was diagnosed using DSM-IV criteria. Sociodemographic data, school performance, and years of education were ascertained by checking documents issued by schools. Health status (hypertension and diabetes) were self reported. Regression models were used to assess the role of school performance and years of education on the risk of dementia.

Results: Dementia was diagnosed in 22 subjects. Higher school performance and years of education decreased the chance of dementia by 79% (OR = 0.21; CI 0.08–0.58) and 21% (OR = 0.79; CI 0.69–0.91), respectively. After adjustments for sociodemographic and clinical variables, only school performance remained statistically significant (OR = 0.06; CI 0.01–0.71).

Conclusions: Education in early life should be viewed as a health issue over the life course. School attainment in certain basic disciplines may be important for cognitive reserve and prevention of dementia in the elderly.

Type
Research Article
Copyright
Copyright © International Psychogeriatric Association 2011

Access options

Get access to the full version of this content by using one of the access options below.

References

Addae, J. I., Youssef, F. F. and Stone, T. W. (2003). Neuroprotective role of learning in dementia: a biological explanation. Journal of Alzheimer's Disease, 5, 91104.CrossRefGoogle ScholarPubMed
American Psychiatric Association (1995). Manual de diagnóstico e estatística de distúrbios mentais (DSMIV). 4th edn. Porto Alegre: Artes Médicas.Google Scholar
Bloss, C. S., Delis, D. C., Salmon, D. P. and Bondi, M. W. (2008). Decreased cognition in children with risk factors for Alzheimer's disease. Biological Psychiatry, 64, 904906. doi:10.1016/j.biopsych.2008.07.004.CrossRefGoogle ScholarPubMed
Bottino, C. M. C., Almeida, O. P., Tamai, S., Fortalenza, O. V., Scalco, M. Z. and Carvalho, I. A. M. (1999). CAMDEX: The Cambridge Examination for Mental Disorders of the Elderly: tradução e adaptação para o português. Projeto terceira idade (PROTER). São Paulo: Instituto e Departamento de Psiquiatria do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo.Google Scholar
Bottino, C. M. C., Lopes, M. A., Moreno, M. P. Q., Hototian, S. R., Azevedo, D. Jr. and Tatsch, M. F. (2005). Prevalence of dementia and MCI in São Paulo, Brazil. International Psychogeriatrics, 17 (Suppl. 2), 80.Google Scholar
Bottino, C. M. C. et al. (2008). Estimate of dementia prevalence in a community sample from sao paulo, brazil. Dementia and Geriatric Cognitive Disorders, 26, 291299. doi: 10.1159/000161053CrossRefGoogle Scholar
Bourne, V. J., Fox, H. C., Deary, I. J. and Whalley, L. J. (2007). Does childhood intelligence predict variation in cognitive change in later life? Personality and Individual Differences, 42, 15511559. doi:10.1016/j.paid.2006.10.030.CrossRefGoogle Scholar
Brayne, C. et al. (2010). Education, the brain and dementia: neuroprotection or compensation? Brain, 133, 22102216. doi:10.1093/brain/awq185.CrossRefGoogle ScholarPubMed
Christensen, H. et al. (1997). Education and decline in cognitive performance: compensatory but not protective. International Journal of Geriatric Psychiatry, 12, 323330. doi: 10.1002/(SICI)1099-1166(199703)12:3<323::AID-GPS492>3.0.CO;2-N.3.0.CO;2-N>CrossRefGoogle Scholar
Deary, I. J., Starr, J. M., and MacLennan, W. J. (1999). Is age kinder to the initially more able? Differential aging of verbal ability in the HOPE study. Intelligence, 26, 357375.CrossRefGoogle Scholar
Dufouil, C., Alpérovitch, A. and Tzourio, C. (2003). Influence of education on the relationship between white matter lesions and cognition. Neurology, 60, 831836.CrossRefGoogle ScholarPubMed
Folstein, M. F., Folstein, S. E. and McHugh, P. R. (1975). “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198.CrossRefGoogle ScholarPubMed
Fritsch, T., McCledom, M. J., Smyth, K. A. and Ogrocki, P. K. (2002). Effects of educational attainment and occupational status on cognitive and functional decline in persons with Alzheimer-type dementia. International Psychogeriatrics, 14, 347363. doi:10.1017/S1041610202008554.CrossRefGoogle ScholarPubMed
Instituto Brasileiro de Geografia e Estatística (2005). Perfil dos idosos responsáveis pelos domicílios. Available at: http://www.ibge.gov.br/home/estatistica/populacao/perfilidoso; last accessed 26 November 2010.Google Scholar
Jones, R. N., Yang, F. M., Zhang, Y., Kiely, D. K., Marcantonio, E. R. and Inouye, S. K. (2006). Does educational attainment contribute to risk for delirium? A potential role for cognitive reserve. Journal of Gerontology, Biological Sciences and Medical Sciences, 61, 13071311.CrossRefGoogle ScholarPubMed
Laks, J. et al. (2005). Prevalence of cognitive and functional impairment in community-dwelling elderly: importance of evaluating activities of daily living. Arquivos de Neuropsiquiatria, 63, 207212.CrossRefGoogle ScholarPubMed
Lee, S., Kawachi, I., Berkman, L. F. and Grodstein, F. (2003). Education, other socioeconomic indicators, and cognitive function. American Journal of Epidemiology, 157, 712720. doi:10.1093/aje/kwg042CrossRefGoogle ScholarPubMed
Market Research Society (2010). Occupation Groupings: A Job Dictionary. London. http:/www.mrs.org.uk/publications/publications.htmGoogle Scholar
Pavlik, V. N., Doody, R. S., Massman, P. J. and Chan, W. (2006). Influence of premorbid IQ and education on progression of Alzheimer's disease. Dementia and Geriatric Cognitive Disorders, 22, 367377. doi: 10.1159/000095640.CrossRefGoogle ScholarPubMed
Piaget, J. (1950) Introduction à l'Épistémologie Génétique. Paris: Press Universitaire.Google Scholar
Richards, M., Shipley, B., Fuhrer, R. and Wadsworth, M. E. (2004). Cognitive ability in childhood and cognitive decline in mid-life: longitudinal birth cohort study. BMJ, 328, 552. doi:10.1136/bmj.37972.513819.EE.CrossRefGoogle ScholarPubMed
Roe, C. M., Xiong, C., Miller, P. and Morris, J. C. (2007). Education and Alzheimer disease without dementia: support for the cognitive reserve hypothesis. Neurology, 68, 223228. doi:10.1212/01.wnl.0000251303.50459.8a.CrossRefGoogle ScholarPubMed
Roth, M., Tum, B. K., Mountjoy, C. Q., Huppert, F. A., Hendrie, H. and Verma, S. (1986). CAMDEX: a standardized instrument for the diagnosis of mental disorder in the elderly with special reference to the early detection of dementia. British Journal of Psychiatry, 149, 608709.CrossRefGoogle Scholar
Scarmeas, N., Albert, S. M., Manly, J. J. and Stern, Y. (2006). Education and rates of cognitive decline in incident Alzheimer's disease. Journal of Neurology, Neurosugery, and Psychiatry, 77, 308316. doi:10.1136/jnnp.2005.072306.CrossRefGoogle ScholarPubMed
Scazufca, M. et al. (2008). Risk factors across the life course and dementia in a Brazilian population: results from the São Paulo Ageing & Health Study (SPAH). International Journal of Epidemiology, 37, 879890. doi:10.1093/ije/dyn125.CrossRefGoogle Scholar
Smyth, K. A., Fritsch, T., Cook, T. B., McClendon, M. J., Santillan, C. E. and Friedland, R. P. (2004). Worker functions and traits associated with occupations and the development of AD. Neurology, 63, 498503.CrossRefGoogle ScholarPubMed
Snowdon, D. A., Kemper, S. J., Mortimer, J. A., Greiner, L. H., Wekstein, D. R. and Markesbery, W. R. (1996). Linguistic ability in early life and cognitive function and Alzheimer's disease in late life – Findings from the nun study. JAMA, 275, 528532.CrossRefGoogle ScholarPubMed
Whalley, L. J., Starr, J. M., Athawes, R., Hunter, D., Pattie, A. and Deary, I. J. (2000). Childhood mental ability and dementia. Neurology, 55, 14551459.CrossRefGoogle ScholarPubMed
Wight, R. G., Aneshensel, C. S. and Seeman, T. E. (2002). Educational attainment, continued learning experience, and cognitive function among older age. Journal of Aging and Health, 14, 211236. doi:10.1177/089826430201400203.CrossRefGoogle Scholar
Wilson, R. S. et al. (2002). Cognitive activity and incident AD in a population-based sample of older persons. Neurology, 59, 19101914.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

School attainment in childhood is an independent risk factor of dementia in late life: results from a Brazilian sample
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

School attainment in childhood is an independent risk factor of dementia in late life: results from a Brazilian sample
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

School attainment in childhood is an independent risk factor of dementia in late life: results from a Brazilian sample
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *