Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-qdp55 Total loading time: 0.406 Render date: 2021-12-05T18:26:01.360Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Olfactory impairment in mild cognitive impairment with Lewy bodies and Alzheimer’s disease

Published online by Cambridge University Press:  20 October 2021

Alan J. Thomas*
Affiliation:
Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, U.K.
Calum A. Hamilton
Affiliation:
Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, U.K.
Sally Barker
Affiliation:
Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, U.K.
Rory Durcan
Affiliation:
Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, U.K.
Sarah Lawley
Affiliation:
Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, U.K.
Nicola Barnett
Affiliation:
Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, U.K.
Michael Firbank
Affiliation:
Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, U.K.
Gemma Roberts
Affiliation:
Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, U.K.
Louise M. Allan
Affiliation:
University of Exeter Medical School, University of Exeter, Exeter, U.K.
John O’Brien
Affiliation:
Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, U.K.
John-Paul Taylor
Affiliation:
Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, U.K.
Paul C. Donaghy
Affiliation:
Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, U.K.
*
Correspondence should be addressed to: Alan J. Thomas, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK. Email: alan.thomas@newcastle.ac.uk.

Abstract

Objectives:

Impaired olfaction may be a biomarker for early Lewy body disease, but its value in mild cognitive impairment with Lewy bodies (MCI-LB) is unknown. We compared olfaction in MCI-LB with MCI due to Alzheimer’s disease (MCI-AD) and healthy older adults. We hypothesized that olfactory function would be worse in probable MCI-LB than in both MCI-AD and healthy comparison subjects (HC).

Design:

Cross-sectional study assessing olfaction using Sniffin’ Sticks 16 (SS-16) in MCI-LB, MCI-AD, and HC with longitudinal follow-up. Differences were adjusted for age, and receiver operating characteristic (ROC) curves were used for discriminating MCI-LB from MCI-AD and HC.

Setting:

Participants were recruited from Memory Services in the North East of England.

Participants:

Thirty-eight probable MCI-LB, 33 MCI-AD, 19 possible MCI-LB, and 32HC.

Measurements:

Olfaction was assessed using SS-16 and a questionnaire.

Results:

Participants with probable MCI-LB had worse olfaction than both MCI-AD (age-adjusted mean difference (B) = 2.05, 95% CI: 0.62–3.49, p = 0.005) and HC (B = 3.96, 95% CI: 2.51–5.40, p < 0.001). The previously identified cutoff score for the SS-16 of ≤ 10 had 84% sensitivity for probable MCI-LB (95% CI: 69–94%), but 30% specificity versus MCI-AD. ROC analysis found a lower cutoff of ≤ 7 was better (63% sensitivity for MCI-LB, with 73% specificity vs MCI-AD and 97% vs HC). Asking about olfactory impairments was not useful in identifying them.

Conclusions:

MCI-LB had worse olfaction than MCI-AD and normal aging. A lower cutoff score of ≤ 7 is required when using SS-16 in such patients. Olfactory testing may have value in identifying early LB disease in memory services.

Type
Original Research Article
Copyright
© International Psychogeriatric Association 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, M. S. et al. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7, 270279.CrossRefGoogle Scholar
Attems, J., Walker, L. and Jellinger, K. A. (2014). Olfactory bulb involvement in neurodegenerative diseases. Acta Neuropathologica, 127, 459475.CrossRefGoogle ScholarPubMed
Beach, T. G. et al. (2020). Severe hyposmia distinguishes neuropathologically confirmed dementia with Lewy bodies from Alzheimer’s disease dementia. PLoS One, 15, e0231720.CrossRefGoogle ScholarPubMed
Donaghy, P. C. et al. (2020). Mild cognitive impairment with Lewy bodies: neuropsychiatric supportive symptoms and cognitive profile. Psychological Medicine, 19.CrossRefGoogle ScholarPubMed
Firbank, M. J. et al. (2021). Hippocampal and insula volume in mild cognitive impairment with Lewy bodies. Parkinsonism & Related Disorders, 86, 2733.CrossRefGoogle ScholarPubMed
Kane, J. P. M. et al. (2018). Clinical prevalence of Lewy body dementia. Alzheimers Research & Therapy, 10, 19.CrossRefGoogle ScholarPubMed
Mahlknecht, P. et al. (2016). Optimizing odor identification testing as quick and accurate diagnostic tool for Parkinson’s disease. Movement Disorders, 31, 14081413.CrossRefGoogle ScholarPubMed
McAleese, K. E. et al. (2021). Concomitant neurodegenerative pathologies contribute to the transition from mild cognitive impairment to dementia. Alzheimer’s & Dementia, 17, 11211133.CrossRefGoogle Scholar
McKeith, I. et al. (2007). Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurology, 6, 305313.CrossRefGoogle ScholarPubMed
McKeith, I. G. et al. (2017). Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology, 89, 88100.CrossRefGoogle ScholarPubMed
McKeith, I. G. et al. (2020). Research criteria for the diagnosis of prodromal dementia with Lewy bodies. Neurology, 94, 743755.CrossRefGoogle Scholar
McShane, R. H. et al. (2001). Anosmia in dementia is associated with Lewy bodies rather than Alzheimer’s pathology. Journal of Neurology, Neurosurgery & Psychiatry, 70, 739743.CrossRefGoogle ScholarPubMed
Murphy, C., Schubert, C. R., Cruickshanks, K. J., Klein, B. E., Klein, R. and Nondahl, D. M. (2002). Prevalence of olfactory impairment in older adults. JAMA, 288, 23072312.CrossRefGoogle ScholarPubMed
OʼBrien, J. T. et al. (2014). Is ioflupane I123 injection diagnostically effective in patients with movement disorders and dementia? Pooled analysis of four clinical trials. BMJ Open, 4, e005122.CrossRefGoogle ScholarPubMed
Oinas, M. et al. (2009). Neuropathologic findings of dementia with lewy bodies (DLB) in a population-based Vantaa 85+ study. Journal of Alzheimer’s Disease, 18, 677689.CrossRefGoogle Scholar
Olichney, J. M. et al. (2005). Anosmia is very common in the Lewy body variant of Alzheimer’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 76, 13421347.CrossRefGoogle ScholarPubMed
Roberts, G. et al. (2021a). Accuracy of dopaminergic imaging as a biomarker for mild cognitive impairment with Lewy bodies. British Journal of Psychiatry, 17.Google Scholar
Roberts, G. et al. (2021b). Accuracy of cardiac innervation scintigraphy for mild cognitive impairment with Lewy bodies. Neurology, 96, e2801e2811.CrossRefGoogle ScholarPubMed
Roberts, G. et al. (2019). Cardiac (123)I-MIBG normal uptake values are population-specific: results from a cohort of controls over 60 years of age. Journal of Nuclear Cardiology, 28, 16921701.CrossRefGoogle ScholarPubMed
Ross, G. W. et al. (2006). Association of olfactory dysfunction with incidental Lewy bodies. Movement Disorders, 21, 20622067.CrossRefGoogle ScholarPubMed
Savica, R., Bradley, B. F. and Mielke, M. M. (2018). When do alpha-synucleinopathies start? An epidemiological timeline: a review. JAMA Neurology, 75, 503509.CrossRefGoogle Scholar
Schneider, J. A., Aggarwal, N. T., Barnes, L., Boyle, P. and Bennett, D. A. (2009). The neuropathology of older persons with and without dementia from community versus clinic cohorts. Journal of Alzheimer’s Disease, 18, 691701.CrossRefGoogle ScholarPubMed
Surendranathan, A. et al. (2021). Introduction of an assessment toolkit associated with increased rate of DLB diagnosis. Alzheimer’s Research & Therapy, 13, 50.CrossRefGoogle ScholarPubMed
Surendranathan, A. et al. (2020). Clinical diagnosis of Lewy body dementia. BJPsych Open, 6, e61.CrossRefGoogle ScholarPubMed
Taylor, J. P. et al. (2020). New evidence on the management of Lewy body dementia. The Lancet Neurology, 19, 157169.CrossRefGoogle ScholarPubMed
Thomas, A. J. et al. (2018). Improving the identification of dementia with Lewy bodies in the context of an Alzheimer’s-type dementia. Alzheimer’s Research & Therapy, 10, 27.CrossRefGoogle ScholarPubMed
Toledo, J. B. et al. (2013). Clinical and multimodal biomarker correlates of ADNI neuropathological findings. Acta Neuropathologica Communications, 1, 65.CrossRefGoogle ScholarPubMed
Wakisaka, Y., Furuta, A., Tanizaki, Y., Kiyohara, Y., Iida, M. and Iwaki, T. (2003). Age-associated prevalence and risk factors of Lewy body pathology in a general population: the Hisayama study. Acta Neuropathologica, 106, 374382.CrossRefGoogle Scholar
Westervelt, H. J., Bruce, J. M. and Faust, M. A. (2016). Distinguishing Alzheimer’s disease and dementia with Lewy bodies using cognitive and olfactory measures. Neuropsychology, 30, 304311.CrossRefGoogle ScholarPubMed
Westervelt, H. J., Stern, R. A. and Tremont, G. (2003). Odor identification deficits in diffuse lewy body disease. Cognitive and Behavioral Neurology, 16, 9399.CrossRefGoogle ScholarPubMed
Williams, S. S., Williams, J., Combrinck, M., Christie, S., Smith, A. D. and McShane, R. (2009). Olfactory impairment is more marked in patients with mild dementia with Lewy bodies than those with mild Alzheimer disease. Journal of Neurology, Neurosurgery & Psychiatry, 80, 667670.CrossRefGoogle ScholarPubMed
Yoo, H. S. et al. (2018). Olfactory dysfunction in Alzheimer’s disease- and Lewy body-related cognitive impairment. Alzheimer’s & Dementia, 14, 12431252.CrossRefGoogle ScholarPubMed
Yoon, J. H., Kim, M., Moon, S. Y., Yong, S. W. and Hong, J. M. (2015). Olfactory function and neuropsychological profile to differentiate dementia with Lewy bodies from Alzheimer’s disease in patients with mild cognitive impairment: a 5-year follow-up study. Journal of the Neurological Sciences, 355, 174179.CrossRefGoogle ScholarPubMed

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Olfactory impairment in mild cognitive impairment with Lewy bodies and Alzheimer’s disease
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Olfactory impairment in mild cognitive impairment with Lewy bodies and Alzheimer’s disease
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Olfactory impairment in mild cognitive impairment with Lewy bodies and Alzheimer’s disease
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *