Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-6mft8 Total loading time: 0.645 Render date: 2021-10-24T01:19:09.661Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Disorders of “taste cognition” are associated with insular involvement in patients with Alzheimer's disease and vascular dementia: “Memory of food is impaired in dementia and responsible for poor diet”

Published online by Cambridge University Press:  03 April 2014

Teiko Suto
Affiliation:
Division of Geriatric Behavioral Neurology, CYRIC, Tohoku University, Sendai, Japan
Kenichi Meguro*
Affiliation:
Division of Geriatric Behavioral Neurology, CYRIC, Tohoku University, Sendai, Japan
Masahiro Nakatsuka
Affiliation:
Division of Geriatric Behavioral Neurology, CYRIC, Tohoku University, Sendai, Japan
Yuriko Kato
Affiliation:
Division of Geriatric Behavioral Neurology, CYRIC, Tohoku University, Sendai, Japan
Kimihiro Tezuka
Affiliation:
Division of Geriatric Behavioral Neurology, CYRIC, Tohoku University, Sendai, Japan
Satoshi Yamaguchi
Affiliation:
Division of Geriatric Behavioral Neurology, CYRIC, Tohoku University, Sendai, Japan
Manabu Tashiro
Affiliation:
Division of Nuclear Medicine, CYRIC, Tohoku University, Sendai, Japan
*
Correspondence should be addressed to: Professor Kenichi Meguro, Division of Geriatric Behavioral Neurology, CYRIC, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan. Phone: +81-22-7177359; Fax: +81-22-7177339. Email: k-meg@umin.ac.jp.

Abstract

Background:

In dementia patients, dietary intake problems may occur despite the absence of swallowing problems. We investigated cognitive functions on food and taste in Alzheimer's disease (AD) and vascular dementia (VaD) patients.

Methods:

Participants included 15 healthy controls (HC), 30 AD and 20 VaD patients. Food Cognition Test: Replicas of three popular foods in Japan with no odors were presented visually to each participant, with the instruction to respond with the name of each food. Replicas of food materials were subsequently presented to ask whether they were included in these foods. Taste Cognition Test: Replicas of 12 kinds of foods were presented to describe their expected tastes.

Results:

The AD/VaD groups exhibited significantly lower scores on Food/Taste Cognition Tests compared with the HC group. These scores correlated inversely with Mini-Mental State Examination (MMSE) scores in the AD group. Decreased dietary intake was observed in 12 of the 50 patients; 8 of the 12 exhibited decreased Taste Cognition Test scores, higher than that of the normal-intake patients. There was no difference in the filter paper taste disc test between HC/AD/VaD groups. To test the hypothesis that the insula is associated with taste cognition, two MMSE-matched AD subgroups (n = 10 vs. 10) underwent positron emission tomography. Glucose metabolism in the right insula was lower in the low taste cognition subgroup. The VaD patients with insular lesions exhibited impaired Taste Cognition Test findings.

Conclusions:

It is important to consider the cognitive aspect of dietary intake when we care for dementia patients.

Type
Research Article
Copyright
Copyright © International Psychogeriatric Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baier, B. and Karnath, H. O. (2008). Tight link between our sense of limb ownership and self-awareness of actions. Stroke, 39, 486488.CrossRefGoogle ScholarPubMed
Binder, J. R. and Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Science, 15, 527536.CrossRefGoogle ScholarPubMed
Damasio, A. R. (1994). Descartes’ Error: Emotion, Reason, and the Human Brain. New York, NY: Putnam.Google Scholar
Damasio, A. R., Grabowski, T. J., Bechara, A., Damasio, H., Ponto, L. L. B. and Parvizi, J. (2000). Subcortical and cortical brain activity during the feeling of self-generated emotions. Nature Neuroscience, 3, 10491056.CrossRefGoogle Scholar
Folstein, M. F., Folstein, S. E. and Mchugh, P. R. (1975). ‘Mini-Mental State’: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189–98.CrossRefGoogle Scholar
Gorno-Timpi, M. L., Hillis, A. E., Weintraub, S., Kertesz, A., Mendez, M. and Cappa, S. F. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76, 10061014.CrossRefGoogle Scholar
Heckmann, J. G., Strossel, C., Lang, C. J. G., Neundorfer, B., Tomandi, B. and Hummel, T. (2005). Taste disorders in acute stroke: a prospective observational study on taste disorders in 102 stroke patients. Stroke, 36, 16901694.CrossRefGoogle ScholarPubMed
Hoffman, P., Jones, R. W., Matthew, A. and Ralph, L. (2012). The degraded concept representation system in semantic dementia: damage to pan-modal hub, then visual spoke. Brain, 135, 37703780.CrossRefGoogle ScholarPubMed
Ishii, H., Meguro, K., Yamaguchi, S., Ishikawa, H. and Yamadori, A. (2007). Prevalence and cognitive performances of vascular cognitive impairment no dementia in Japan: the Osaki-Tajiri Project. European Journal of Neurology, 14, 609616.CrossRefGoogle ScholarPubMed
Janes, A. C., Pizzagalli, D. A., Richardt, S., deB Frederick, D. and Chuzi, S. (2010). Brain reactivity to smoking cues prior to smoking cessation predicts ability to maintain tobacco abstinence. Biological Psychiatry, 67, 722729.CrossRefGoogle ScholarPubMed
Janus, C. et al. (2004). Impaired conditioned taste aversion learning in APP transgenic mice. Neurobiology in Aging, 25, 12131219.CrossRefGoogle ScholarPubMed
Kato, M., Shimizu, Y. and Sugiyama, M. (2005). Nutrition Care Management in the Long-Term Care Insurance. Tokyo, Japan: Japan Society for Nutrition and Care Management (pp. 85113).Google Scholar
Kuroda, R. (2001). Soft Food for Older Adults. Tokyo, Japan: Research Institute for Health Science. ISBN 9784905690740.Google Scholar
Lee, L., Frederick, S. and Ariely, D. (2006). Try it, you’ll like it: the influence of expectation, consumption, and revelation on preferences for beer. Psychological Science, 17, 10541058.CrossRefGoogle ScholarPubMed
Leow, L. P., Huckabee, M. L., Anderson, T. and Beckert, L. (2010). The impact of dysphagia on quality of life in ageing and Parkinson's disease as measured by the swallowing quality of life (SWAL-QOL) questionnaire. Dysphagia, 25, 216220.CrossRefGoogle Scholar
Malik, S., McGlone, F., Bedrossian, D. and Dagher, A. (2008). Ghrelin modulates brain activity in areas that control appetitive behavior. Cell and Metabolism, 7, 400409.CrossRefGoogle ScholarPubMed
Martinaud, O., Opolczynski, G., Gaillard, M. J. and Hannequin, D. (2009). Relevant category-specific effect on naming in Alzheimer's disease. Dementia and Geriatric Cognitive Disorders, 28, 413418.CrossRefGoogle ScholarPubMed
McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D. and Stadian, E. M. (1984). Clinical diagnosis of Alzheimer's disease: report of the NINCDS–ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease. Neurology, 34, 939944.CrossRefGoogle Scholar
Monteiro, I. M., Boksay, I., Auer, S. R., Torossian, C., Ferris, S. H. and Reisberg, B. (2001). Addition of a frequency-weighted score to the Behavioral Pathology in Alzheimer's Disease Rating Scale: the BEHAVE-AD-FW: methodology and reliability. European Psychiatry, 16 (Suppl. 1), 5s24s.CrossRefGoogle ScholarPubMed
Nakamura, Y., Tokumori, K., Tanabe, H. C., Yoshiura, T., Kobayashi, K. and Nakamura, Y. (2013). Localization of the primary taste cortex by contrasting passive and attentive conditions. Experimental Brain Research. Epublished 19 April 2013.Google Scholar
Nakatsuka, M., Meguro, K., Tsuboi, M., Nakamura, K., Akanuma, K. and Yamaguchi, S. (2013). Content of delusional thoughts in Alzheimer's disease and assessment of content-specific brain dysfunctions with BEHAVE-AD-FW and SPECT. International Psychogeriatrics, 25, 939948.CrossRefGoogle ScholarPubMed
Phelps, M. E., Huang, S. C., Hoffman, E. J., Selin, C., Sokoloff, L. and Kuhl, D. E. (1979). Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose. Annals of Neurology, 6, 371388.CrossRefGoogle ScholarPubMed
Pobric, G., Jefferies, E. and Lambon Ralph, M. A. (2010). Amodal semantic representations depend on both anterior temporal lobes: evidence from repetitive transcranial magnetic stimulation. Neuropsychologia, 20, 964968.Google Scholar
Rogers, T. T., Lambon Ralph, M. A., Garrard, P., Bozeat, S., McClelland, J. L. and Hodges, J. R. (2004). Structure and deterioration of semantic memory: a neuropsychological and computational investigation. Psychological Review, 111, 205235.CrossRefGoogle ScholarPubMed
Roman, G. C., Tatemichi, T. K., Erkinjuntti, T., Cummings, J. L., Masdeu, J. C. and Garcia, J. H. (1993). Vascular dementia: diagnostic criteria for research studies: report of the NINCDS–AIREN international workshop. Neurology, 43, 250260.CrossRefGoogle Scholar
Simons, W. K., Martin, A. and Barsalou, L. W. (2005). Pictures of appetizing foods activate gustatory cortices for taste and reward. Cerebral Cortex, 15, 16021608.CrossRefGoogle Scholar
Steinbach, S., Hund, W., Vaitl, A., Heinrich, P., Foster, S. and Burger, K. (2010). Taste in mild cognitive impairment and Alzheimer's disease. Journal of Neurology, 257, 238246.CrossRefGoogle ScholarPubMed
Stevenson, R. J., Miller, L. A. and McGrillen, K. (2013). The lateralization of gustatory function and the flow of information from tongue to cortex. Neuropsychologia, http://dx.doi.org/10.1016/j.neuropsychologia.2013.01.010.CrossRefGoogle Scholar
Tomita, H. (1986). Basis and practice of clinical taste examinations. Auris Nasus Larynx, 13, 115.CrossRefGoogle ScholarPubMed
Von Skramlik Schwarz, G. (1956). Uber die sinnlichen Wirkungen von Geschmackslosungen in der Mundhohle. Journal of Biology [Germany], 111, 99127.Google Scholar
Wakita, K., Imahori, Y. and Ido, T. (2000). Simplification for measuring input function of FDG PET: investigation of 1-point blood sampling method. Journal of Nuclear Medicine, 41, 14841490.Google ScholarPubMed
Woolley, J. D., Gorno-Tempini, M. L., Seeley, W. W., Rankin, K., Lee, S. S. and Matthews, B. R. (2007). Binge eating is associated with right orbitofrontal-insular-striatal atrophy in frontotemporal dementia. Neurology, 69, 14241433.CrossRefGoogle ScholarPubMed
17
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Disorders of “taste cognition” are associated with insular involvement in patients with Alzheimer's disease and vascular dementia: “Memory of food is impaired in dementia and responsible for poor diet”
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Disorders of “taste cognition” are associated with insular involvement in patients with Alzheimer's disease and vascular dementia: “Memory of food is impaired in dementia and responsible for poor diet”
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Disorders of “taste cognition” are associated with insular involvement in patients with Alzheimer's disease and vascular dementia: “Memory of food is impaired in dementia and responsible for poor diet”
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *