Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T09:09:05.349Z Has data issue: false hasContentIssue false

Interaction of Dicladispa armigera (Coleoptera: Chrysomelidae) haemocytes with Beauveria bassiana

Published online by Cambridge University Press:  01 June 2008

Moushumi Phukan
Affiliation:
Department of Entomology, Assam Agricultural University, Jorhat785 013, Assam, India
L.K. Hazarika*
Affiliation:
Department of Entomology, Assam Agricultural University, Jorhat785 013, Assam, India
Madhumita Barooah
Affiliation:
Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat785 013, Assam, India:
K.C. Puzari
Affiliation:
Mycology Research Section, Assam Agricultural University, Jorhat785 013, Assam, India
S. Kalita
Affiliation:
Department of Entomology, Assam Agricultural University, Jorhat785 013, Assam, India
Get access

Abstract

Morphology of haemocytes of healthy and Beauveria bassiana (Bals.) Vuill.-infected Dicladispa armigera (Olivier) adults was examined in a phase contrast microscope to characterize them into different types. The total haemocyte count (THC) and the differential haemocyte count (DHC) were also estimated. Four types of haemocytes were identified: prohaemocyte, plasmatocyte, granulocyte and spherulocyte. In the healthy adults, the THC varied between 5055 and 5950/mm3, out of which 85% were composed of granulocytes and plasmatocytes. As B. bassiana infection time increased, THC decreased and was associated with a significant concomitant increase in granulocytes and a decrease in prohaemocytes. Granulocytes reacted in various ways, including disintegration of the plasma membrane, formation of fine pseudopod-like cytoplasmic extensions and finally, clumping of cells. Granulocytes and plasmatocytes were the predominant haemocytes involved in all the cell-mediated defence reactions.

Type
Research Paper
Copyright
Copyright © ICIPE 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, D., Gunn, H., Hellers, M., Johanson, H. and Steiner, H. (1990) Immune responses in Trichoplusia ni challenged with bacteria and baculoviruses. Insect Biochemistry 20, 537543.CrossRefGoogle Scholar
Arnold, J. W. (1974) The hemocytes of insects, pp. 201254. In The Physiology of Insecta (Edited by Rockstein, M.), Vol. 5, 2nd ed.Academic Press, New York.CrossRefGoogle Scholar
Arnold, J. W. and Hinks, C. F. (1979) Insect hemocytes under light microscopy techniques, pp. 531538. In Insect Hemocytes: Development, Forms, Functions and Techniques (Edited by Gupta, A. P.). Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Baines, D., De Santis, T. and Downer, R. G. H. (1992) Octopamine and 5-hydroxytryptomine enhance the phagocytic and nodule formation activities of cockroach (Periplaneta americana) hemocytes. Journal of Insect Physiology 38, 905914.CrossRefGoogle Scholar
Bardoloi, S. and Hazarika, L. K. (1992) Seasonal variation of body weight, lipid reserves, blood volumes and hemocyte population of Antheraea assama (Lepidoptera: Saturniidae). Environmental Entomology 21, 13981403.CrossRefGoogle Scholar
Beaulaton, J. (1979) Hemocytes and hemopoiesis in silkworms. Biochimie 61, 157164.CrossRefGoogle ScholarPubMed
Brehélin, M. and Zachary, D. (1986) Insect hemocytes: a new classification to rule out the controversy, pp. 3648. In Immunity in Invertebrates (Edited by Brehélin, M.). Springer, Berlin.Google Scholar
Brehélin, M., Drif, L., Baud, L. and Boemare, N. (1989) Activation of prophenoloxidase in insect haemolymph: cooperation between humoral and cellular factors in Locusta migratoria. Insect Biochemistry 19, 301307.CrossRefGoogle Scholar
Cebesoy, S. and Ayvali, C. (1996) Some histochemical observations on the hemocytes of the Agrotis segetum (Dennis and Sciff.) (Lepidoptera: Noctuidae). Turkish Journal of Zoology 20, 231239.CrossRefGoogle Scholar
Cupp, M. S., Chen, Y. and Cupp, E. W. (1997) Cellular hemolymph response of Simulium vittatum (Diptera: Simuliidae) to intrathoracic injection of Onchocerca lienalis (Filariodea: Onchocercidae) macrofilariae. Journal of Medical Entomology 34, 5663.CrossRefGoogle Scholar
Da Silva, J. B., De Albuquerque, C. M., De Araujo, E. C., Peixota, C. A. and Hurd, H. (2000) Immune defense mechanisms of Culex quinquifasciatus (Diptera: Culicidae) against Candida albicans infection. Journal of Invertebrate Pathology 76, 257262.CrossRefGoogle Scholar
Deka, M. and Hazarika, L. K. (1996) Mating behavior of Dicladispa armigera (Coleoptera: Chrysomelidae). Annals of the Entomological Society of America 89, 137141.CrossRefGoogle Scholar
Gardiner, E. M. M. and Strand, M. R. (2000) Hematopoiesis in larval Pseudoplusia includens and Spodoptera frugiperda. Archive of Insect Biochemistry and Physiology 43, 147164.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Gillespie, J. P., Burnett, C. and Charnley, A. K. (2000) The immune response of the desert locust Schistocerca gregaria during mycosis of the entomopathogenic fungus Metarhizium flavoviridae. Journal of Insect Physiology 46, 429437.CrossRefGoogle Scholar
Giulianini, P. G., Bertolo, F., Battistella, S. and Amirante, G. A. (2003) Ultrastructure of the hemocytes of Cetonischema aeruginosa larvae (Coleoptera: Scarabaeidae): involvement of both granulocytes and oenocytoids in in vivo phagocytosis. Tissue Cell 35, 243251.CrossRefGoogle ScholarPubMed
Gotz, P. and Bowman, H. G. (1985) Insect immunity, pp. 453485. In Comparative Insect Physiology, Biochemistry and Pharmacology (Edited by Kerkut, G. A. and Gilbert, L. I.). Vol. 3. Pergamon Press, Oxford.Google Scholar
Gotz, P. and Vey, A. (1974) Humoral encapsulation in Diptera (Insecta): defense reactions of Chironomus larvae against fungi. Parasitology 68, 113.Google Scholar
Gupta, A. P. (1979a) Hemocyte types: their structures, synonymies, interrelationships and taxonomic significance, pp. 85127. In Insect Hemocytes: Development, Forms, Functions and Techniques (Edited by Gupta, A. P.). Cambridge University Press, Cambridge.Google Scholar
Gupta, A. P. (1979b) Identification key for hemocyte types in hanging-drop preparations, pp. 527529. In Insect Hemocytes: Development, Forms, Functions and Techniques (Edited by Gupta, A. P.). Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Gupta, A. P. (1985) Cellular elements in hemolymph, pp. 401451. In Comparative Insect Physiology, Biochemistry and Pharmacology (Edited by Kerkut, G. A. and Gilbert, L. I.). Vol. 3. Pergamon Press, Oxford.Google Scholar
Gupta, A. P. and Sutherland, D. J. (1966) In vitro transformation of the insect plasmatocyte in some insects. Journal of Insect Physiology 12, 13691375.CrossRefGoogle Scholar
Hazarika, L. K. (2005) Rice hispa: how much do we really know about it?, 119. In Gleanings in Entomology (Edited by Ramamurthy, V. V., Singh, V. S., Gupta, G. P. and Paul, A. V. N.). Golden Printers and Publishers, New Delhi.Google Scholar
Hazarika, L. K. and Gupta, A. P. (1987) Variation in hemocyte populations during various developmental stages of Blattela germanica (L.) (Dictyoptera, Blattellidae). Zoological Science 4, 307313.Google Scholar
Hazarika, L. K. and Puzari, K. C. (1990) Beauveria bassiana (Bals.) Vuill. for biological control of rice hipa in Assam, India. International Rice Research Newsletter 15, 31.Google Scholar
Hazarika, L. K. and Puzari, K. C. (1995) White muscardine fungus (Beauveria bassiana) pathogenic to different stages of rice hispa (Dicladispa armigera). Indian Journal of Agricultural Sciences 65, 368372.Google Scholar
Hazarika, L. K. and Puzari, K. C. (1997) Field efficacy of white muscardine fungus (Beauveria bassiana) on rice hispa (Dicladispa armigera). Indian Journal of Agricultural Sciences 67, 463465.Google Scholar
Hazarika, L. K. and Puzari, K. C. (2004) Mycoinsecticide for management of rice hispa, pp. 184198. In Contemporary Trends in Insect Science (Edited by Gujar, G. T.). Campus Books, New Delhi.Google Scholar
Hazarika, L. K. and Puzari, K. C. (2005) Entomopathogenic fungi in rice pest management, pp. 139149. In Proceedings of ICAR–CABI Workshop on Biopesticide Formulations and Application (Edited by Rabindra, R. J., Hussaini, S. S. and Ramanujam, B.). Project Directorate of Biological Control, Bangalore.Google Scholar
Hazarika, L. K., Deka, M. and Bhuyan, M. (2005) Oviposition behaviour of the rice hispa, Dicladispa armigera (Coleoptera: Chrysomelidae). International Journal of Tropical Insect Science 25, 5054.CrossRefGoogle Scholar
Hoch, G., Solter, L. F. and Schopf, A. (2004) Hemolymph melanization and alteration in hemocyte numbers in Lymantria dispar larvae following infections with different entomopathogenic microsporidia. Entomologia Experimentalis et Applicata 113, 7786.CrossRefGoogle Scholar
Hung, S. Y., Boucias, D. G. and Vey, A. J. (1993) Effect of Beauveria bassiana and Candida albicans on the cellular defense response of Spodoptera exigua. Journal of Invertebrate Pathology 61, 179187.CrossRefGoogle ScholarPubMed
Islam, Z. (1989) Crop losses due to hispa beetle damage in deepwater rice (DWR). International Rice Research Newsletter 14, 53.Google Scholar
Jayachandran, G., Choudhuri, S. and Ramkrishnan, N. (1999) Cellular reactions of Spodoptera litura (Fabricius) infected with nuclear polyhedrosis virus involving hemocyte dynamics. Journal of Entomological Research 23, 99105.Google Scholar
Kalia, V., Choudhari, S. and Gujar, G. T. (2001) Changes in hemolymph constituents of American bollworm Helicoverpa armigera (Hubner), infected with nucleopolyhedrosis. Indian Journal of Experimental Biology 39, 11231129.Google Scholar
Kulshrestha, V. and Pathak, S. C. (1997) Aspergillosis in German cockroach, Blattella germanica L. (Blattoidea; Blattellidae). Mycopathologia 139, 7578.Google Scholar
Kurtz, J. and Sauer, K. P. (2001) Gender differences in phenoloxidase activity of Panorpa vulgaris hemocytes. Journal of Invertebrate Pathology 78, 5355.CrossRefGoogle ScholarPubMed
Lackie, A. M. (1988) Immune mechanisms in insects. Parasitology Today 4, 98105.CrossRefGoogle ScholarPubMed
Lanot, R., Zachary, D., Holder, F. and Meister, M. (2001) Postembryonic hematopoiesis in Drosophila. Developmental Biology 230, 243257.CrossRefGoogle ScholarPubMed
Lavine, M. D. and Strand, M. R. (2002) Insect hemocytes and their role in immunity. Insect Biochemistry and Molecular Biology 32, 12951309.CrossRefGoogle ScholarPubMed
Loosová, G., Jindrák, L. and Kopácek, P. (2001) Mortality caused by experimental infection with the yeast Candida haemulonii in the adults of Ornithodoros moubata (Acarina: Argasidae). Folia Parasitologica 48, 143153.Google Scholar
Mochiah, M. B., Ngi-Song, A. J., Overholt, W. A. and Botchey, M. (2003) Variation in total and differential hemocyte count of Busseola fusca (Lepidoptera: Noctuidae) parasitized by two biotypes of Cotesia sesamiae (Hymenoptera: Braconidae) and larval growth responses. Environmental Entomology 32, 247255.CrossRefGoogle Scholar
Nappi, A. J. (1981) Cellular immune response of Drosophila melanogaster against Asobara tabida. Parasitology 83, 319324.CrossRefGoogle Scholar
Narayanan, K. (2004) Insect defense: its impact on microbial control of insect pests. Current Science 86, 800813.Google Scholar
Nardi, J. B., Pilas, B., Ujhelyi, E., Garsha, K. and Kanost, M. R. (2003) Hematopoietic organs of Manduca sexta and hemocyte lineages. Development of Genes and Evolution 213, 477491.Google Scholar
Nath, R. K. and Dutta, B. C. (1997) Assessment of yield loss due to rice hispa, Dicladispa armigera (Oliv.). Journal of Agricultural Science Society of North-East India 10, 268270.Google Scholar
Neuwirth, M. (1974) Granular hemocytes, the main phagocytic cells in Calpodes ethlius (Lepidoptera: Hesperiidae). Canadian Journal of Zoology 52, 783784.CrossRefGoogle ScholarPubMed
Pech, L. L. and Strand, M. R. (1996) Granular cells are required for encapsulation of foreign targets by insect hemocytes. Journal of Cell Science 109, 20532060.CrossRefGoogle Scholar
Pech, L. L. and Strand, M. R. (2000) Plasmatocytes from the moth Pseudoplusia includens induce apoptosis of granular cells. Journal of Insect Physiology 46, 15651573.Google Scholar
Polaszek, A., Rabbi, M. F., Islam, Z. and Buckley, Y. M. (2002) Trichogramma zahiri (Hymenoptera: Trichogrammatidae) an egg parasitoid of the rice hispa, Dicladispa armigera (Coleoptera: Chrysomelidae) in Bangladesh. Bulletin of Entomological Research 92, 529537.Google Scholar
Puzari, K. C., Hazarika, L. K. and Deka, N. (1994) Pathogenicity of Beauveria bassiana on rice hispa. Indian Journal of Agricultural Sciences 64, 123125.Google Scholar
Ratcliffe, N. A. (1993) Cellular defense responses of insects: unresolved problems, pp. 245266. In Parasites and Pathogens of Insects (Edited by Beckage, N. E., Thompson, S. N. and Federici, B. A.). Vol. 1. Academic Press, New York.Google Scholar
Ratcliffe, N. A. and Gagen, S. J. (1976) Cellular defense reactions of insect hemocytes in vivo: nodule formation and development in Galleria mellonella and Pieris brassicae larvae. Journal of Invertebrate Pathology 28, 373382.CrossRefGoogle Scholar
Ratcliffe, N. A. and Gagen, S. J. (1977) Studies on the in vitro cellular reactions of insects: an ultrastructural analysis of nodule formation in Galleria mellonella. Tissue Cell 9, 7385.CrossRefGoogle Scholar
Ratcliffe, N. A. and Rowley, A. F. (1979) Role of hemocytes in defense against biological agents, pp. 331414. In Insect Hemocytes (Edited by Gupta, A. P.). Cambridge University Press, Cambridge.Google Scholar
Ribeiro, C. and Brehélin, M. (2006) Insect haemocytes: what type of cell is that? Journal of Insect Physiology 52, 417429.CrossRefGoogle Scholar
Ribeiro, C., Simões, N. and Brehélin, M. (1996) Insect immunity: the hemocytes of the armyworm Mythimna unipuncta (Lepidoptera: Noctuidae) and their role in defense reactions. In vivo and in vitro studies. Journal of Insect Physiology 42, 815822.Google Scholar
Rizki, R. M. and Rizki, T. M. (1990) Parasitoid virus-like particles destroy Drosophila cellular immunity. Proceedings of the National Academy of Sciences of the United States of America 87, 83888392.Google Scholar
Rosenberg, C. R. and Jones, J. C. (1960) Studies on total cell counts of southern armyworm larvae, Prodenia eridonia (Lepidoptera). Annals of the Entomological Society of America 53, 351355.Google Scholar
Rowley, A. F. and Ratcliffe, N. A. (1981) Insects, pp. 471490. In Invertebrate Blood Cells (Edited by Ratcliffe, N. A. and Rowley, A. F.). Academic Press, New York.Google Scholar
Russo, J., Brehélin, M. and Carton, Y. (2001) Hemocyte changes in resistant and susceptible strains of D. melanogaster caused by virulent and avirulent strains of the parasitic wasp Leptopilina boulardi. Journal of Insect Physiology 47, 167172.CrossRefGoogle Scholar
Schmid-Hempel, P. (2005) Evolutionary ecology of insect immune defenses. Annual Review of Entomology 50, 529551.CrossRefGoogle ScholarPubMed
Schmidt, A. R. and Ratcliffe, N. A. (1977) The encapsulation of foreign tissue implants in Galleria mellonella larvae. Journal of Insect Physiology 23, 175184.Google Scholar
Schmidt, A. R. and Ratcliffe, N. A. (1978) The encapsulation of araldite implants and recognition of foreignness in Clitumnus extradentatus. Journal of Insect Physiology 24, 511521.Google Scholar
Schmidt, O., Theopol, U. and Strand, M. R. (2001) Innate immunity and evasion by insect parasitoids. BioEssays 23, 344351.Google Scholar
SPSS (1999). Statistical package for the social sciences. Version 10.0. SPSS, Chicago, Illinois..Google Scholar
Stoltz, D. B. and Vinson, S. B. (1979) Viruses and parasitism in insects. Advances in Virus Research 24, 125171.CrossRefGoogle ScholarPubMed
Tikku, K., Saxena, B. P., Satti, N. K. and Suri, K. A. (1992) Plumbagin-induced ultrastructural haemocytic response of Dysdercus koenigii F. Insect Science and Its Application 13, 787791.Google Scholar
Tojo, S., Naganuma, F., Arakawa, K. and Yokoo, S. (2000) Involvement of both granular cells and plasmatocytes in phagocytic reactions in the greater wax moth, Galleria mellonella. Journal of Insect Physiology 46, 11291135.CrossRefGoogle ScholarPubMed
Tzou, P., De Gregorio, E. and Lemaitre, B. (2002) How Drosophilla combats microbial infection: a model to study innate immunity and host–pathogen interactions. Current Opinion on Microbiology 5, 102110.Google Scholar
Vinson, S. B. (1990) How parasitoids deal with the immune system of their host: an overview. Archive of Insect Biochemistry and Physiology 18, 94100.Google Scholar
Wago, H. (1983) The important significance of filopodial function of phagocytic granular cells of the silkworm Bombyx mori in recognition of foreignness. Developments of Comparative Immunology 7, 445453.CrossRefGoogle ScholarPubMed