Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-02T19:06:38.757Z Has data issue: false hasContentIssue false

Evaluation of three north-eastern Quercus species for oak tasar silkworm rearing

Published online by Cambridge University Press:  19 September 2011

Rakesh K. Pandey
Affiliation:
Purvanchal Sericulture Development Project, Central Silk Board, 12 A Kasturba Nagar, Sigra, Varanasi-221 010, India
Get access

Abstract

The oak tasar silkworm, Antheraea proylei J., was reared on the foliage of Quercus serrata Thunb., Q. griffithii Hook. fil. and Thoms, and Q. dealbata Hook, fil and Thoms. under controlled indoor conditions to assess the suitability of these plants as feed for the silkworm. Relative growth rate of the silkworm was lowest on Q. dealbata, perhaps due to the relatively low level of crude protein and high level of crude fibre in this species. These results show that Q. dealbata is a nutritionally inferior food plant in comparison with Q. serrata and Q. griffithii.

Résumé

Le ver-à-soie tasar du chêne, Antheraea proylei J. a été élevé sur feuille de Quercus serrata Thunb., Q. griffithii Hook. fil. and Thoms., et Q. dealbata Hook. fil and Thoms. dans des conditions contrôlées de laboratoire en vue d'évaluer leur convenance en tant que nourriture pour le ver-à-soie tasar, Le taux de croissance relatif du ver-à-soie tasar du chêne était le plus bas avec Q. dealbata à cause peut-être de la moindre teneur en protéines foliaires brutes et de plus de fibres brutes. Ces résultats montrent que Q. dealbata est une plante inférieure sur le plan nutritionnel, comparée à Q. serrata et Q. griffithii.

Type
Research Articles
Copyright
Copyright © ICIPE 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AOAC (1984) Official Methods of Analysis, 14th Ed.Association of Agricultural Chemists, Arlington, VA.Google Scholar
Jolly, M. S., Narasimhanna, M. N., Sinha, S. S. and Sen, S. K. (1974) Tasar Culture. Ambica Publishers, Bombay.Google Scholar
Mattson, W. J. Jr, (1980) Herbivory in relation to plant nitrogen content. Ann. Rev. Ecol. Syst. 11, 119161.CrossRefGoogle Scholar
Pandey, R. K., Noamani, M. K. R., Das, P. K. and Thangavelu, K. (1991) Advances in oak tasar rearing technology. Indian Silk 30(5) 3538.Google Scholar
Pandey, R. K. (1992) Decline in proteins and increase in fibres with ageing of oak foliage. Comp. Physiol. Ecol. 17, 5456.Google Scholar
Scriber, J. M. (1978) The effects of larval feeding specialization and plant growth form on the consumption and utilization of plant biomass and nitrogen: An ecological consideration. Ent. Exp. and Appl. 24, 494510.CrossRefGoogle Scholar
Scriber, J. M. (1984) Host plant suitability. In Chemical Ecology of Insects (Edited by Bell, W. J. and Cardé, R. T.), pp. 159202. Chapman and Hall Ltd., London.CrossRefGoogle Scholar
Scriber, J. M. and Slansky, F. Jr (1981) The nutritional ecology of immature insects. Annu. Rev. Entomol. 26, 183211.CrossRefGoogle Scholar
Waldbauer, G. P. (1968) The consumption and utilization of food by insects. Adv. Insect Physiol. 5, 229288.CrossRefGoogle Scholar