Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T09:02:28.844Z Has data issue: false hasContentIssue false

Tunable multiport system for measurement of two-port scattering parameters

Published online by Cambridge University Press:  17 August 2015

Kamil Staszek
Affiliation:
AGH University of Science and Technology, 30-059 Cracow, Poland. Phone: +48-12 617-30-21
Slawomir Gruszczynski*
Affiliation:
AGH University of Science and Technology, 30-059 Cracow, Poland. Phone: +48-12 617-30-21
Krzysztof Wincza
Affiliation:
AGH University of Science and Technology, 30-059 Cracow, Poland. Phone: +48-12 617-30-21
*
Corresponding author: S. Gruszczynski Email: slawomir.gruszczynski@agh.edu.pl

Abstract

A novel multiport system, allowing for measurements of scattering parameters in over-two-octave frequency range is proposed. It is composed of two directional couplers and a standard 4 × 4 Butler matrix, and does not require any isolators. The presented system features a uniform power distribution providing the high precision of measurements, which can be further enhanced by a simple adjustment of the system's parameters. A comprehensive analysis of the proposed system configurations, a fully analytical calibration for transmission coefficient measurement, and the estimation of maximum measurement error are given. The proposed measuring system has been experimentally verified in a wide frequency range 1–5 GHz, by measurements of S-parameters of exemplary components. The measurement results are very close to the values obtained with the use of a commercial vector network analyser within the 50 dB range of measured values’ magnitude.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Engen, G.F.: The six-port reflectometer: an alternative network analyzer. IEEE Trans. Microw. Theory Techn., 25 (12) (1977), 10751080.CrossRefGoogle Scholar
[2] Engen, G.F.: A (historical) review of the six-port measurement technique. IEEE Trans. Microw. Theory Techn., 45 (12) (1997), 24142417.CrossRefGoogle Scholar
[3] Hoer, C.A.: A network analyzer incorporating two six-port reflectometers. IEEE Trans. Microw. Theory Techn., 25 (12) (1977), 10701074.Google Scholar
[4] Hoer, C.A.: Performance of a dual six-port automatic network analyzer. IEEE Trans. Microw. Theory Techn., 27 (12) (1979), 993998.Google Scholar
[5] Chung, N.S.; Kim, J.H.; Shin, J.: A dual six-port automatic network analyzer and its performance. IEEE Trans. Microw. Theory Techn., 32 (12) (1984), 16831686.Google Scholar
[6] Haddadi, K.; Wang, M.M.; Glay, D.; Lasri, T.: Performance of a compact dual six-port millimeter-wave network analyzer. IEEE Trans. Instrum. Meas., 60 (9) (2011), 32073213.Google Scholar
[7] Muiioz, J.; Margineda, J.; Martin, E.; Rojo, M.: Dual five-port analyzer using fixed probes. IEEE Trans. Instrum. Meas., 43 (3) (1994), 415420.Google Scholar
[8] Brantervik, K.; Kollberg, E.L.: A new four-port automatic network analyzer: part I – description and performance. IEEE Trans. Microw. Theory Tech., 33 (7) (1985), 563568.CrossRefGoogle Scholar
[9] Jia, S.: New application of a single six-port reflectometer. Electron. Lett., 20 (22) (1984), 920922.Google Scholar
[10] Hunter, J.D.; Somlo, P.I.: S-parameter measurements with a single six-port. Electron. Lett., 21 (4) (1985), 157158.CrossRefGoogle Scholar
[11] Xiao-Ming, L.: Measurement of two-port networks by a single six-port reflectometer, in Int. Conf. on Millimeter Wave and Far-Infrared Technology, Beijing, China, 1989, 370–373.Google Scholar
[12] Khouaja, S.; Ghannouchi, F.M.: A single six-port based automated network analyzer. IEEE MTT-S Int. Microw. Symp. Dig., 3 (1998), 15031506.Google Scholar
[13] Staszek, K.; Gruszczynski, S.; Wincza, K.: Broadband measurements of S-parameters utilizing 4 × 4 Butler matrices. IEEE Trans. Microw. Theory Techn., 61 (4) (2013), 16921699.CrossRefGoogle Scholar
[14] Staszek, K.; Gruszczynski, S.; Wincza, K.: Broadband measurements of S-parameters with the use of a single 8 × 8 Butler matrix. IEEE Trans. Microw. Theory Techn., 62 (2) (2014), 352360.Google Scholar
[15] Brunetti, L.; Fornero, C.; Rietto, G.: Six-port reflectometer: influence of Q-points position in Γ-plane on sidearm power detector error propagation. IEEE Trans. Instrum. Meas., 38 (2) (1989), 484487.Google Scholar
[16] Staszek, K.; Gruszczynski, S.; Wincza, K.: Theoretical limits and accuracy improvement of reflection coefficient measurements in six-port reflectometers. IEEE Trans. Microw. Theory Techn., 61 (8) (2013), 29662974.CrossRefGoogle Scholar
[17] Probert, P.J.; Carroll, J.E.: Design features of multi-port reflectometers. Microw. Optics Antennas, 129 (5) (1982), 245252.Google Scholar
[18] Kim, K.; Kim, N.; Hwang, S-H.; Kim, Y-K.; Kwon, Y.: A miniaturized broadband multi-state reflectometer integrated on a silicon MEMS probe for complex permittivity measurement of biological material. IEEE Trans. Microw. Theory Techn., 61 (5) (2013), 22052214.Google Scholar
[19] Monzo-Cabrera, J.; Pedreno-Molina, J.L.; Lozano-Guerrero, A.; Toledo-Moreo, A.: A novel design of a robust ten-port microwave reflectometer with autonomous calibration by using neural networks. IEEE Trans. Microw. Theory Techn., 56 (12) (2008), 29722978.CrossRefGoogle Scholar
[20] Staszek, K.; Kaminski, P.; Rydosz, A.; Gruszczynski, S.; Wincza, K.: A least-squares approach to the calibration of multiport reflectometers. Int. Microwave & RF Conf. IMaRC 2013, Delhi, India, 2013.Google Scholar
[21] Gruszczynski, S.; Wincza, K.: Broadband multisection asymmetric 8.34-dB directional coupler with improved directivity, in Asia Pacific Microwave Conf. APMC 2007, Bangkok, Thailand, 2007.Google Scholar
[22] Gruszczynski, S.; Wincza, K.: Design of high-performance broadband multisection symmetrical 3-dB directional coupler. Microw. Opt. Techn. Lett., 50 (3) (2008), 636638.Google Scholar
[23] Gruszczynski, S.; Wincza, K.: Broadband 4 × 4 Butler matrices as a connection of symmetrical multisection coupled-line 3-dB directional couplers and phase correction networks. IEEE Trans. Microw. Theory Techn., 57 (1) (2009), 19.CrossRefGoogle Scholar