Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-20T01:08:36.109Z Has data issue: false hasContentIssue false

Segmented quarter cylindrical dielectric resonator antenna: simulation and experimental investigation in composite form for wideband applications

Published online by Cambridge University Press:  06 June 2016

Pinku Ranjan
Affiliation:
Department of Electronics Engineering, Indian School of Mines, Dhanbad, Jharkhand, India. Phone: +91-326-2235903
Ravi Kumar Gangwar*
Affiliation:
Department of Electronics Engineering, Indian School of Mines, Dhanbad, Jharkhand, India. Phone: +91-326-2235903
*
Corresponding author: R.K. Gangwar Email: ravi.gangwar.ece07@itbhu.ac.in

Abstract

A probe feed wideband multi-element dual segments quarter cylindrical dielectric resonator antenna (q-CDRA) in composite forms have been proposed. The q-CDRA has been introduced by splitting CDRA into four uniform quarters and multi-segmentation approach has been castoff for further improvement in bandwidth of q-CDRA. The dual segments q-CDRA has been designed and analyzed using theoretical analysis and Ansoft HFSS simulation software. Further the dual segment multi-element q-CDRAs in composite form have been designed. A coaxial probe has been placed at the center of the ground plane for the excitation of proposed multi-element and multi-segmented composite form of q-CDRA, which excite TM01δ mode in the proposed antenna. The input characteristics and radiation patterns of the proposed composite antennas have been studied and their results are compared with corresponding experimental results. Prototype of single, two, and four elements dual-segment composite q-CDRAs have been fabricated and input characteristics of the proposed composite antennas have been compared with each other. Four elements dual-segment composite q-CDRA has shown wide impedance bandwidth (|S11| ≤ −10 dB) of 85.13% with monopole-like radiation pattern. The peak gain of 4.85 dBi with 98.5% radiation efficiency has been achieved for dual-segment four elements composite q-CDRA. The proposed multi-element dual-segment composite q-CDRAs may find suitable applications in C and X-band with complete covering of the 5.0 GHZ wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) band.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Petosa, A.: Dielectric Resonator Antenna Handbook, Artech House, Boston, UK, 2007.Google Scholar
[2] Luk, K.M.; Leung, K.W.: Dielectric Resonator Antennas Handbook, Research Studies Press Ltd, Baldock, Hertfordshire, England, 2003.Google Scholar
[3] Kajfez, D.; Guillon, P.: Dielectric Resonator, Artech House, Norwood, MA, 1986.Google Scholar
[4] Long, A.; Stuart, A.; Mark, W.Mc.; Shen, L.C.: The resonant cylindrical dielectric cavity antenna. IEEE Trans. Antenna Propag., 31 (1983), 406412.CrossRefGoogle Scholar
[5] Petosa, A.; Simons, N.; Siushansian, R.; Ittipiboon, A.; Cuhaci, M.: Design and analysis of multisegment dielectric resonator antennas. IEEE Trans. Antennas Propag., 48 (2000), 738742.CrossRefGoogle Scholar
[6] Kishk, A.A.; Glisson, A.W.; Junker, G.P.; Kajfez, D.: Effect of air-gap on cylindrical dielectric resonator antenna operating in TM01 mode. Electron. Lett., 30 (1994), 9798.Google Scholar
[7] Shum, S.M.; Luk, K.M.: Characteristics of dielectric ring resonatorantenna with an air-gap. Electron. Lett., 30 (1994), 277278.CrossRefGoogle Scholar
[8] Kishk, A.A.; Ahn, B.; Kajfez, D.: Broadband stacked dielectric resonator antennas. Electron. Lett., 25 (1989), 12321233.CrossRefGoogle Scholar
[9] Kishk, A.A.; Zhang, X.; Glisson, A.W.; Kajfez, D.: Numerical analysis of stacked dielectric resonator antennas excited by a coaxial probe for wideband applications. IEEE Trans. Antennas Propag., 51 (2003), 19962000.CrossRefGoogle Scholar
[10] Gebril, K.K.; Rahim, S.K.A.; Abdulrahman, A.Y.: Bandwidth enhancement and miniaturization of dielectric resonator antenna for 5.8 GHz WLAN. Progr. Electromagn. Res. C, 19 (2011), 179189.CrossRefGoogle Scholar
[11] Matthew, T.; Tam, K.; Ross, D.M.: Compact circular sector and annular sector dielectric resonator antenna. IEEE Trans. Antennas Propag., 47 (1999), 837842.Google Scholar
[12] Matthew, T.; Tam, K.; Ross, D.M.: Circularly polarized circular sector dielectric resonator antenna. IEEE Trans. Antennas Propag., 48 (2000), 126128.Google Scholar
[13] Guha, D.; Gupta, B.; Kumar, C.; Antar, Y.M.M.: Segmented hemispherical DRA: new geometry characterized and investigated in multi-element composite forms for wideband antenna applications. IEEE Trans. Antennas Propag., 60 (2012), 16051610.CrossRefGoogle Scholar
[14] Guha, D.; Antar, Y.M.M.: New half-hemispherical dielectric resonator antenna for broadband monopole-type radiation. IEEE Trans. Antennas Propag., 54 (2006), 36213628.CrossRefGoogle Scholar
[15] Mongia, R.K.; Ittipiboon, A.; Antar, Y.M.M.: A half –split cylindrical dielectric resonator antenna using slot-coupling. IEEE Microw. Guid. Wave Lett., 3 (1993), 3839.CrossRefGoogle Scholar
[16] Mongia, R.K.: Half-split dielectric resonator placed on a metallic plane for antenna applications. Electron. Lett., 25 (1989), 462464.CrossRefGoogle Scholar
[17] Kishk, A.A.; Glisson, A.W.: Bandwidth enhancement for split cylindrical dielectric resonator antennas. Progr. Electromagn. Res., 33 (2001), 97118.CrossRefGoogle Scholar
[18] Saed, M.; Yadla, R.: Microstrip- fed low profile and compact dielectric resonator antennas Progr. Electromagn. Res., 56 (2006), 151162.CrossRefGoogle Scholar
[19] Cormos, D.; Laisne, A.; Gillard, R.F.; Bolzer, Le.; Nicolas, C.: Compact dielectric resonator antenna for WLAN applications. Electron. Lett., 39 (2003), 588590.CrossRefGoogle Scholar
[20] Mongia, R.K.; Ittipiboon, A.; Bhartia, P.; Cuhaci, M.: Electric monopole antenna using a dielectric ring resonator. Electron. Lett., 29 (1993), 15301531.CrossRefGoogle Scholar
[21] Guha, D.; Antar, Y.M.M.: Four-element cylindrical dielectric resonator antenna for wideband monopole-like radiation. IEEE Trans. Antennas Propag., 54 (2006), 26572662.CrossRefGoogle Scholar
[22] Gangwar, R.K.; Ranjan, P.; Aigal, A.: Four element triangular dielectric resonator antenna for wireless application. Int. J. Microw. Wireless Technol., (2015). doi: 10.1017/S1759078715000860.Google Scholar
[23] Gangwar, R.K.; Singh, S.P.; Kumar, D.: Four element wideband rectangular dielectric resonator antenna terminated in bio-medium. Wireless Pers. Commun., 73 (2013), 663677.CrossRefGoogle Scholar
[24] Aras, M.; Shahrieel, M.; Abidin, M.Z.; Aziz, A.; Zulhani, R.: An Array of Dielectric Resonator Antenna for wireless application, in IEEE Int. RF and Microwave Conf. Proc., Kuala Lumpur, Malaysia, 2–4 December 2008.CrossRefGoogle Scholar
[25] Aras, M.; Shahrieel, M.; Aziz, A.; Abidin, M.Z.: Dielectric Resonator Antenna (DRA) for Wireless Application, in IEEE Int. RF And Microwave Conf. Proc., Kuala Lumpur, Malaysia, 2–4 December 2008.CrossRefGoogle Scholar
[26] Balanis, C.A.: Antenna Theory and Design, 3rd ed., Wiley, New York, NY, USA, 2007.Google Scholar