Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T16:31:00.862Z Has data issue: false hasContentIssue false

Analysis of RF power amplifiers in LINC systems

Published online by Cambridge University Press:  05 January 2012

Ronald Montesinos*
Affiliation:
LaMIPS, Laboratoire Commun NXP-CRISMAT UMR 6508 CNRS ENSICAEN UCBN, Caen, France Dép. Systèmes Electroniques, ESIEE Paris, Cité Descartes, BP99, 93162 Noisy-le-Grand, France
Corinne Berland
Affiliation:
LaMIPS, Laboratoire Commun NXP-CRISMAT UMR 6508 CNRS ENSICAEN UCBN, Caen, France Dép. Systèmes Electroniques, ESIEE Paris, Cité Descartes, BP99, 93162 Noisy-le-Grand, France
Mazen Abi Hussein
Affiliation:
LaMIPS, Laboratoire Commun NXP-CRISMAT UMR 6508 CNRS ENSICAEN UCBN, Caen, France Dép. Systèmes Electroniques, ESIEE Paris, Cité Descartes, BP99, 93162 Noisy-le-Grand, France
Olivier Venard
Affiliation:
LaMIPS, Laboratoire Commun NXP-CRISMAT UMR 6508 CNRS ENSICAEN UCBN, Caen, France Dép. Télécommunications, ESIEE Paris, Cité Descartes, BP99, 93162 Noisy-le-Grand, France
Philippe Descamps
Affiliation:
LaMIPS, Laboratoire Commun NXP-CRISMAT UMR 6508 CNRS ENSICAEN UCBN, Caen, France
*
Corresponding author: R. Montesinos Email: r.montesinos@esiee.fr

Abstract

LInear amplification using Non-linear Components (LINC) is an architecture that achieves linear power amplification for radio-frequency (RF) transmitters. This paper describes the impact of RF power amplifiers (PAs) class on the overall system performances. The linearity and efficiency of the LINC transmitter with different PA classes (AB, B, C, D, E, F, F−1, and J) are evaluated and compared, in terms of error vector magnitude (EVM), adjacent channel leakage ratio (ACLR), and power added efficiency (PAE), for a 16QAM modulation having 5.6 dB peak to average power ratio. Simulations are performed using a gallium-nitride high electron mobility transistor (GaN HEMT) for a power amplifier with an output power of 10 W at 900 MHz.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Cox, D.: Linear amplification with nonlinear components. IEEE Trans. Commun., 12 (1974), 19421945.CrossRefGoogle Scholar
[2]Raab, F.: Efficiency of outphasing RF power-amplifier systems. IEEE Trans. Commun., 12 (1985), 10941099.CrossRefGoogle Scholar
[3]Raab, F. et al. : Power amplifiers and transmitters for RF and microwave. IEEE Trans. Microw. Theory Tech., 3 (2002), 814826.CrossRefGoogle Scholar
[4]Yao, J.; Long, S.: Power amplifier selection for LINC applications. IEEE Trans. Circuits Syst. II, 8 (2006), 763767.Google Scholar
[5]Birafane, A.; El-Asmar, M.; Kouki, A.B.; Helaoui, M.; Ghannouchi, F.M.: Analyzing LINC systems. IEEE Microw. Mag., 5 (2010), 5971.CrossRefGoogle Scholar
[6]Chireix, H.: High power outphasing modulation. Proc. Inst. Radio Eng., 11 (1935), 13701392.Google Scholar
[7]Bi, J.: Chireix's LINC Power Amplifier for Base Station applications using GaN devices with load compensation, Master Thesis, TuDelft, 2008.Google Scholar
[8]Hakala, I. et al. : A 2.14-GHz Chireix outphasing transmitter. IEEE Trans., Microw. Theory Tech., 6 (2005), 21292138.CrossRefGoogle Scholar
[9]Montesinos, R.; Berland, C.; Abi-Hussein, M.; Venard, O.; Descamps, P.: Comparative analysis of LINC transmitter performances with class AB and class F power amplifiers, in New IEEE 9th Int. Circuits and Systems Conf. (NEWCAS), 233236, June 2011.Google Scholar
[10]Colantonio, P.; Giannini, F.; Limiti, E.: High Efficiency RF and Microwave Solid State Power Amplifierss. John Wiley & Sons, 2009.Google Scholar
[11]Cripps, S.C.: RF Power Amplifiers for Wireless Communications. Artech House, Norwood, MA, 2006.Google Scholar
[12]Wright, P.; Lees, J.; Benedikt, J.; Tasker, P.J.; Cripps, S.C.: A methodology for realizing high efficiency class-J in a linear and broadband PA. IEEE Trans. Microw. Theory Tech., 12 (2009), 31963204.CrossRefGoogle Scholar
[13]Wood, S.; Smith, P.; Pribble, W.; Pengelly, R.; Crescenzi, J.: High efficiency, high linearity GaN HEMT amplifiers for WiMAX applications, 2006, available at: http://www.cree.com/products/wireless_docs.aspGoogle Scholar
[14]Kazimierczuk, M.K.: RF Power Amplifiers. Wiley, Ohio, 2008.Google Scholar
[15]Grebennikov, A.; Sokal, N.O.: Switchmode RF Power Amplifiers. Newnes, New York, 2007.Google Scholar
[16]Kim, J.H. et al. : Modeling and design methodology of high-efficiency class-F and class-F−1 power amplifiers. IEEE Trans. Microw. Theory Tech., 1 (2011), 153165.CrossRefGoogle Scholar
[17]Raab, F.: Class-f power amplifiers with maximally flat waveforms. IEEE Trans. Microw. Theory Tech., 11 (1997), 20072012.CrossRefGoogle Scholar
[18]Colantonio, P.; Giannini, F; Leuzzi, G.; Limiti, E.: On the class-F power amplifier design. Int. J. RF Microw. Computer-Aided Eng., 9 (1999), 129149.3.0.CO;2-U>CrossRefGoogle Scholar
[19]Colantonio, P.; Giannini, F; Leuzzi, G.; Limiti, E.: High efficiency low-voltage power amplifier design by second harmonic manipulation. Int. J. RF and Microw. Comput.-Aided Eng., 10 (2000), 1932.3.0.CO;2-G>CrossRefGoogle Scholar