Hostname: page-component-788cddb947-w95db Total loading time: 0 Render date: 2024-10-09T01:56:29.609Z Has data issue: false hasContentIssue false

New insights into reliability of electrostatic capacitive RF MEMS switches

Published online by Cambridge University Press:  01 September 2011

Usama Zaghloul*
Affiliation:
CNRS; LAAS; 7 avenue du colonel Roche, F-31077 Toulouse, France Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France NLBB Laboratory, The Ohio State University, Columbus, OH 43210, USA. Phone: +33 5 6133 6817
George J. Papaioannou
Affiliation:
CNRS; LAAS; 7 avenue du colonel Roche, F-31077 Toulouse, France Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France University of Athens, Solid State Physics, Panepistimiopolis Zografos, Athens, Greece
Bharat Bhushan
Affiliation:
NLBB Laboratory, The Ohio State University, Columbus, OH 43210, USA. Phone: +33 5 6133 6817
Fabio Coccetti
Affiliation:
CNRS; LAAS; 7 avenue du colonel Roche, F-31077 Toulouse, France Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France
Patrick Pons
Affiliation:
CNRS; LAAS; 7 avenue du colonel Roche, F-31077 Toulouse, France Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France
Robert Plana
Affiliation:
CNRS; LAAS; 7 avenue du colonel Roche, F-31077 Toulouse, France Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France
*
Corresponding author: U. Zaghloul Email: usama.zaghloul@laas.fr

Abstract

Among other reliability concerns, the dielectric charging is considered the major failure mechanism which hinders the commercialization of electrostatic capacitive radio frequency micro-electro-mechanical systems (RF MEMS) switches. In this study, Kelvin probe force microscopy (KPFM) surface potential measurements have been employed to study this phenomenon. Several novel KPFM-based characterization methods have been proposed to investigate the charging in bare dielectric films, metal–insulator–metal (MIM) capacitors, and MEMS switches, and the results from these methods have been correlated. The used dielectric material is plasma-enhanced chemical vapor deposition (PECVD) silicon nitride. The SiNx films have been charged by using a biased atomic force microscope (AFM) tip or by electrically stressing MIM capacitors and MEMS switches. The influence of several parameters on the dielectric charging has been studied: dielectric film thickness, deposition conditions, and under layers. Fourier transform infra-red (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) material characterization techniques have been used to determine the chemical bonds and compositions, respectively, of the SiNx films. The data from the physical material characterization have been correlated to the KPFM results. The study provides an accurate understanding of the charging/discharging processes in dielectric films implemented in electrostatic MEMS devices.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Rebeiz, G.M.: RF MEMS Theory, Design, and Technology, John Wiley & Sons, Inc., Hoboken, NJ, 2003.CrossRefGoogle Scholar
[2]Rebeiz, G.; Muldavin, J.: RF MEMS switches and switch circuits. IEEE Microw. Mag., 2 (2001), 5971.CrossRefGoogle Scholar
[3]Newman, H.: RF MEMS switches and applications, in 2002 IEEE Int. Reliability Physics Symp. Proc. 40th Annual, IEEE, New York, 2002, 111115.Google Scholar
[4]Wibbeler, J.; Pfeifer, G.; Hietschold, M.: Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems (MEMS). Sens. Actuator A – Phys., 71 (1998), 7480.CrossRefGoogle Scholar
[5]Man, K.: MEMS reliability for space applications by elimination of potential failure modes through testing and analysis, in Lawton, R.A. ,Miller, G.Lin, W.M. and Ramesham, R. (eds.), Proc. of SPIE MEMS Reliability for Critical and Space Applications, vol. 3880, SPIE, Bellingham, Washington, 1999 120129.Google Scholar
[6]Rottenberg, X.; Nauwelaers, B.; De Raedt, W.; Tilmans, H.: Distributed dielectric charging and its impact on RF MEMS devices, in Proc. of the 34th European Microwave Conf., IEEE, New York, 2004, 7780.Google Scholar
[7]Spengen, W.; Puers, R.; Mertens, R.; Wolf, I.: A comprehensive model to predict the charging and reliability of capacitive RF MEMS switches. J. Micromech. Microeng., 14 (2004), 514521.CrossRefGoogle Scholar
[8]Goldsmith, C.; Forehand, D.; Peng, Z.; Hwang, J.; Ebel, I.: High-cycle life testing of RF MEMS switches, in 2007 IEEE MTT-S Int. Microwave Symp. Proc., IEEE, New York, 2007, 18051808.Google Scholar
[9]Zaghloul, U. et al. : Assessment of dielectric charging in electrostatically driven MEMS devices: a comparison of available characterization techniques. J. Microelectron. Reliab., 50 (2010b), 16151620.Google Scholar
[10]Yuan, X., Hwang, J.; Forehand, D.; Goldsmith, C.: Modeling and characterization of dielectric-charging effects in RF MEMS capacitive switches in 2005 IEEE MTT-S Int. Microwave Symp. Dig., IEEE, New York, 2005, 753756.Google Scholar
[11]Lamhamdi, M. et al. : Charging-Effects in RF capacitive switches influence of insulating layers composition. J. Microelectron. Reliab., 46 (2006), 17001704.CrossRefGoogle Scholar
[12]Lamhamdi, M. et al. : Voltage and temperature effect on dielectric charging for RF-MEMS capacitive switches reliability investigation. J. Microelectron. Reliab., 48 (2008), 12481252.CrossRefGoogle Scholar
[13]Papandreou, E.; Lamhamdi, M.; Skoulikidou, C.M.; Pons, P.; Papaioannou, G.; Plana, R.: Structure dependent charging process in RF MEMS capacitive switches. J. Microelectron. Reliab., 47 (2007), 18121817.CrossRefGoogle Scholar
[14]Daigler, R.; Papandreou, E.; Koutsoureli, M.; Papaioannou, G.; Papapolymerou, J.: Effect of deposition conditions on charging processes in SiNx: application to RF-MEMS capacitive switches. J. Microelectron. Eng., 86 (2009), 404407.CrossRefGoogle Scholar
[15]Zaghloul, U.; Papaioannou, G.; Coccetti, F.; Pons, P.; Plana, R.: Dielectric charging in silicon nitride films for MEMS capacitive switches: Effect of film thickness and deposition conditions. J. Microelectron. Reliab., 49 (2009a), 13091314.CrossRefGoogle Scholar
[16]Melle, S. et al. : Reliability modeling of capacitive RF MEMS. IEEE Trans. Microw. Theory Tech., 53 (2005), 34823488.CrossRefGoogle Scholar
[17]Papaioannou, G.; Exarchos, M.; Theonas, V.; Wang, G.; Papapolymerou, J.: Temperature study of the dielectric polarization effects of capacitive RF MEMS switches. IEEE Trans. Microw. Theory Tech., 53 (2005), 34673473.Google Scholar
[18]Herfst, R.; Huizing, H.; Steeneken, P.; Schmitz, J.: Characterization of dielectric charging in RF MEMS capacitive switches, in Proc. of the IEEE Int. Conf. on Microelectronic Test Structures, IEEE, New York, 2006, 133136.Google Scholar
[19]Ruan, J. et al. : ESD failure signature in capacitive RF MEMS switches. J. Microelectron. Reliab., 48 (2008), 12371240.CrossRefGoogle Scholar
[20]Lamhamdi, M. et al. : Si3N4 thin films proprerties for RF-MEMS reliability investigation, in Proc. of the Int. Solid-State Sensors, Actuators and Microsystems Conf., 2007 (TRANSDUCERS 2007), IEEE, New York, 2007, 579582.Google Scholar
[21]Belarni, A. et al. : Kelvin probe microscopy for reliability investigation of RF-MEMS capacitive switches. J. Microelectron. Reliab., 48 (2008), 12321236.CrossRefGoogle Scholar
[22]Herfst, R.; Steeneken, P.; Schmitz, J.; Mank, A.; van Gils, M.: Kelvin probe study of laterally inhomogeneous dielectric charging and charge diffusion in RF MEMS capacitive switches, in 2008 IEEE Int. Reliability Physics Symp. Proc. 46th Annual (IRPS 2008), IEEE, New York, 2008, 492495.Google Scholar
[23]Zaghloul, U.; Abelarni, A.; Coccetti, F.; Papaioannou, G.; Plana, R.; Pons, P.: Charging processes in silicon nitride films for RF-MEMS capacitive switches: the effect of deposition method and film thickness in Spearing, S.M., Vengallatore, S., Sheppard, N. and Bagdahn, J. (eds.), Microelectromechanical Systems – Materials and Devices II, MRS Proc., vol. 1139, Material Research Society (MRS), Pennsylvania, 2008, 141146.Google Scholar
[24]Zaghloul, U. et al. : A comprehensive study for dielectric charging process in silicon nitride films for RF MEMS switches using Kelvin probe microscopy, in 2009 Int. Solid-State Sensors, Actuators and Microsystems Conf. (TRANSDUCERS 2009), IEEE, New York, 2009b, 789793.Google Scholar
[25]Zaghloul, U.; Papaioannou, G.; Coccetti, F.; Pons, P.; Plana, R.: Effect of humidity on dielectric charging process in electrostatic capacitive RF MEMS switches based on Kelvin probe force microscopy surface potential measurements in Bagdahn, J., Sheppard, N., Turner, K. and Vengallatore, S. (eds.), Microelectromechanical Systems – Materials and Devices III, MRS Proc., vol. 1222, Material Research Society(MRS), Pennsylvania, 2009c, 3944.Google Scholar
[26]Zaghloul, U.; Coccetti, F.; Papaioannou, G.; Pons, P.; Plana, R.: A novel low cost failure analysis technique for dielectric charging phenomenon in electrostatically actuated MEMS devices in 2010 IEEE Int. Reliability Physics Symp., IEEE, New York, 2010c, 237245.Google Scholar
[27]Zaghloul, U.; Papaioannou, G.J.; Coccetti, F.; Pons, P.; Plana, R.: A systematic reliability investigation of the dielectric charging process in electrostatically actuated MEMS based on Kelvin probe force microscopy. J. Micromech. Microeng., 20 (2010a), Art.# 064016, (12pp). doi: 10.1088/0960-1317/20/6/064016.CrossRefGoogle Scholar
[28]Jacobs, H.O.; Knapp, H.F.; Müller, S.; Stemmer, A.: Surface potential mapping: a qualitative material contrast in SPM. Ultramicroscopy, 69 (1997), 3949.CrossRefGoogle Scholar
[29]DeVecchio, D.; Bhushan, B.: Use of a nanoscale Kelvin probe for detecting wear precursors. Rev. Sci. Instrum., 69 (1998), 36183624.Google Scholar
[30]Bhushan, B.; Goldade, A.: Measurements and analysis of surface potential change during wear of single-crystal silicon (100) at ultralow loads using Kelvin probe microscopy. App. Surf. Sci., 157 (2000), 373381.Google Scholar
[31]Zaghloul, U.; Bhushan, B.; Pons, P.; Papaioannou, G.; Coccetti, F.; Plana, R.: On the influence of environment gases, relative humidity and gas purification on dielectric charging/discharging processes in electrostatically driven MEMS/NEMS devices. Nanotechnology, 22 (2011), Art.# 035705, (22pp). doi:10.1088/0957-4484/22/3/035705.CrossRefGoogle ScholarPubMed
[32]Jacobs, H.O.; Leuchtmann, P.; Homan, O.J.; Stemmer, A.: Resolution and contrast in Kelvin probe force microscopy. J. Appl. Phys., 84 (1998), 11681173.CrossRefGoogle Scholar
[33]Ramprasad, R.: Phenomenological theory to model leakage currents in metal-insulator-metal capacitor systems. Phys. Status Solidi B – Basic Solid State Phys., 239 (2003), 5970.CrossRefGoogle Scholar
[34]Zaghloul, U. et al. : Nanoscale characterization of the dielectric charging phenomenon in PECVD silicon nitride thin films with various interfacial structures based on Kelvin probe force microscopy. Nanotechnology, 22 (2011), Art.# 205708, (25pp). doi:10.1088/0957-4484/22/20/205708.CrossRefGoogle ScholarPubMed
[35]Simmons, J.G.: Poole-Frenkel effect and Schottky effect in metal–insulator–metal systems. Phys. Rev., 155 (1967), 657660.Google Scholar
[36]Yuan, X.; Peng, Z.; Hwang, J.; Forehand, D.; Goldsmith, C.: Acceleration of dielectric charging in RF MEMS capacitive switches. IEEE Trans. Dev. Mater. Reliab., 6 (2006), 556563.CrossRefGoogle Scholar
[37]Mardivirin, D.; Bouyge, D.; Crunteanu, A.; Pothier, A.; Blondy, P.: Study of Residual charing in dielectric less capacitive MEMS switches in 2008 IEEE MTT-S Int. Microwave Symp. Dig., IEEE, New York, 2008, 3336.Google Scholar
[38]Goldsmith, C. et al. : Lifetime characterization of capacitive RF MEMS switches in 2001 IEEE MTT-S Int. Microwave Symp. Proc., IEEE, New York, 2001, 227230.Google Scholar
[39]Czarnecki, P. et al. : Effect of substrate charging on the reliability of capacitive RF MEMS switches. Sens. Actuator A – Phys., 154 (2009), 261268.CrossRefGoogle Scholar