Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-28T13:21:12.228Z Has data issue: false hasContentIssue false

Towards a comprehensive model of Earth's disk-integrated Stokes vector

Published online by Cambridge University Press:  18 November 2014

A. García Muñoz*
Affiliation:
ESA/RSSD, ESTEC, 2201 AZ Noordwijk, The Netherlands

Abstract

A significant body of work on simulating the remote appearance of Earth-like exoplanets has been done over the last decade. The research is driven by the prospect of characterizing habitable planets beyond the Solar System in the near future. In this work, I present a method to produce the disk-integrated signature of planets that are described in their three-dimensional complexity, i.e. with both horizontal and vertical variations in the optical properties of their envelopes. The approach is based on Pre-conditioned Backward Monte Carlo integration of the vector Radiative Transport Equation and yields the full Stokes vector for outgoing reflected radiation. The method is demonstrated through selected examples inspired by published work at wavelengths from the visible to the near infrared and terrestrial prescriptions of both cloud and surface albedo maps. I explore the performance of the method in terms of computational time and accuracy. A clear strength of this approach is that its computational cost does not appear to be significantly affected by non-uniformities in the planet optical properties. Earth's simulated appearance is strongly dependent on wavelength; both brightness and polarization undergo diurnal variations arising from changes in the planet cover, but polarization yields a better insight into variations with phase angle. There is partial cancellation of the polarized signal from the northern and southern hemispheres so that the outgoing polarization vector lies preferentially either in the plane parallel or perpendicular to the planet scattering plane, also for non-uniform cloud and albedo properties and various levels of absorption within the atmosphere. The evaluation of circular polarization is challenging; a number of one-photon experiments of 109 or more is needed to resolve hemispherically integrated degrees of circular polarization of a few times 10−5. Last, I introduce brightness curves of Earth obtained with one of the Messenger cameras at three wavelengths (0.48, 0.56 and 0.63 μm) during a flyby in 2005. The light curves show distinct structure associated with the varying aspect of the Earth's visible disk (phases of 98–107°) as the planet undergoes a full 24 h rotation; the structure is reasonably well reproduced with model simulations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, L., Gillet, S., Lardière, O., Riaud, P. & Schneider, J. (2002). A test for the search for life on extrasolar planets. Looking for the terrestrial vegetation signature in the Earthshine spectrum. Astron. & Astrophys. 392, 231237.CrossRefGoogle Scholar
Bailey, J. (2007). Rainbows, polarization, and the search for habitable planets. Astrobiology 7, 320332.CrossRefGoogle ScholarPubMed
Bazzon, A., Schmid, H.M. & Gisler, D. (2013). Measurement of the earthshine polarization in the B, V, R, and I bands as function of phase. Astron. & Astrophys. 556, A117.CrossRefGoogle Scholar
Brandt, T.D. & Spiegel, D.S. (2014). Prospects for detecting oxygen, water, and chlorophyll on an exo-Earth. Proceedings of the National Academy of Sciences. 111, 13278–13283.CrossRefGoogle Scholar
Buenzli, E. & Schmid, H.M. (2009). A grid of polarization models for Rayleigh scattering planetary atmospheres. Astron. & Astrophys. 504, 259276.CrossRefGoogle Scholar
Carone, L., Keppens, R. & Decin, L. (2014). Connecting the dots: a versatile terrestrial planet benchmark for the atmospheres of tidally locked Super-Earths. Monthly Notices of the Royal Astronomical Society 445, 930–945.CrossRefGoogle Scholar
Des Marais, D.J., Harwit, M.O., Jucks, K.W., Kasting, J.F., Lin, D.N.C., Lunine, J.I., Schneider, J., Seager, S., Traub, W.A. & Woolf, N.J. (2002). Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. Astrobiology 2, 153181.CrossRefGoogle ScholarPubMed
Domingue, D.L., Vilas, F., Holsclaw, G.M., Warell, J., Izenberg, N.R. et al. (2010). Whole-disk spectrophotometric properties of Mercury: synthesis of MESSENGER and ground-based observations. Icarus 209, 101124.CrossRefGoogle Scholar
Ford, E.B., Seager, S. & Turner, E.L. (2001). Characterization of extrasolar terrestrial planets from diurnal photometric variability. Nature 412, 885887.CrossRefGoogle ScholarPubMed
García Muñoz, A. & Mills, F.P. (2014). Pre-conditioned Backward Monte Carlo solutions to radiative transport in planetary atmospheres. Fundamentals: Sampling of propagation directions in polarising media. Astron. & Astrophys., DOI: http://dx.doi.org/10.1051/0004-6361/201424042.CrossRefGoogle Scholar
García Muñoz, A., Pérez-Hoyos, S. & Sánchez-Lavega, A. (2014). Glory revealed in disk-integrated photometry of Venus. Astron. & Astrophys. 566, id.L1.CrossRefGoogle Scholar
Goode, P.R., Qiu, J., Yurchyshyn, V., Hickey, J., Chu, M.-C. et al. (2001). Earthshine observations of the Earth's reflectance. Geophys. Res. Lett. 28, 16711674.CrossRefGoogle Scholar
Hess, M., Koepke, P. & Schult, I. (1998). Optical properties of aerosols and clouds: the software package OPAC. Bull. Am. Met. Soc. 79, 831844.2.0.CO;2>CrossRefGoogle Scholar
Jacquinet-Husson, N., Scott, N.A., Chédin, A., Garceran, K., Armante, R. et al. (2005). The 2003 edition of the GEISA/IASI spectroscopic database. J. Quant. Spec. Rad. Trans. 95, 429467.CrossRefGoogle Scholar
Joshi, M. (2003). Climate model studies of synchronously rotating planets. Astrobiology 3, 415427.CrossRefGoogle ScholarPubMed
Karalidi, T. & Stam, D.M. (2012). Modeled flux and polarization signals of horizontally inhomogeneous exoplanets applied to Earth-like planets. Astron. & Astrophys. 546, A56.CrossRefGoogle Scholar
Karalidi, T., Stam, D.M. & Hovenier, J.W. (2011). Flux and polarisation spectra of water clouds on exoplanets. Astron. & Astrophys. 530, A69.CrossRefGoogle Scholar
Karalidi, T., Stam, D.M. & Hovenier, J.W. (2012). Looking for the rainbow on exoplanets covered by liquid and icy water worlds. Astron. & Astrophys. 548, A90.CrossRefGoogle Scholar
Kataria, T., Showman, A.P., Fortney, J.J., Marley, M.S. & Freedman, R.S. (2014). The atmospheric circulation of the super Earth GJ 1214b: dependence on composition and metallicity. Astrophys. J. 785, 92.CrossRefGoogle Scholar
Kawata, Y. (1978). Circular polarization of sunlight reflected by planetary atmospheres. Icarus 33, 217232.CrossRefGoogle Scholar
Kemp, J.C., Wolstencroft, R.A. & Swedlund, J.B. (1971). Circular Polarization: Jupiter and Other Planets. Nature 232, 165168.CrossRefGoogle ScholarPubMed
Livengood, T.A., Deming, L.D., A'Hearn, M.F., Charbonneau, D., Hewagama, T. et al. (2011). Properties of an Earth-like planet orbiting a Sun-like star: Earth observed by the EPOXI mission. Astrobiology 11, 907930.CrossRefGoogle ScholarPubMed
Loughman, R.P., Griffioen, E., Oikarinen, L., Postylyakov, O.V., Rozanov, A. et al. (2004). Comparison of radiative transfer models for limb-viewing scattered sunlight measurements. J. Geophys. Res.: Atmospheres 109, CiteID, D06303.Google Scholar
Mallama, A. (2009). Characterization of terrestrial exoplanets based on the phase curves and albedos of Mercury, Venus and Mars. Icarus 204, 1114.CrossRefGoogle Scholar
McNutt, R.L. Jr., Solomon, S.C., Grant, D.G., Finnegan, E.J., Bedini, P.D. & The MESSENGER Team (2008). The MESSENGER mission to Mercury: status after the Venus flybys. Acta Astronautica 63, 6873.CrossRefGoogle Scholar
Menou, K. (2012). Atmospheric circulation and composition of GJ1214b. Astrophys. J. Lett. 744, L16.CrossRefGoogle Scholar
Mick, A., Murchie, S., Prockter, L., Rivkin, A., Guinness, E. & Ward, J. (2012). MESSENGER MDIS CDR/RDR software interface specification. Version 1.2.11.Google Scholar
Mishchenko, M.I., Travis, L.D. & Lacis, A.A. (2002). Scattering, Absorption and Emission of Light by Small Particles. Cambridge University Press, Cambridge.Google Scholar
Moody, E.G., King, M.D., Platnick, S., Schaaf, C.B. & Gao, F. (2005). Spatially complete global spectral surface albedos: value-added datasets derived from Terra MODIS land products. IEEE Trans. Geosci. Remote Sens. 43, 144158.CrossRefGoogle Scholar
Nagdimunov, L., Kolokolova, L. & Mackowski, D. (2014). Characterization and remote sensing of biological particles using circular polarization. JQSRT 131, 5965.CrossRefGoogle Scholar
Robinson, T.D., Meadows, V.S. & Crisp, D. (2010). Detecting oceans on extrasolar planets using the glint effect. Astrophys. J. Lett. 721, L67L71.CrossRefGoogle Scholar
Robinson, T.D., Meadows, V.S., Crisp, D., Deming, D., A'Hearn, M.F. et al. (2011). Earth as an extrasolar planet: Earth model validation using EPOXI Earth observations. Astrobiology 11, 393408.CrossRefGoogle ScholarPubMed
Seager, S., Turner, E.L., Schafer, J. & Ford, E.B. (2005). A possible spectroscopic biosignature of extraterrestrial plants. Astrobiology 5, 372390.CrossRefGoogle ScholarPubMed
Sparks, W.B., Hough, J.H. & Bergeron, L.E. (2005). A search for chiral signatures on Mars. Astrobiology 5, 737748.CrossRefGoogle ScholarPubMed
Sparks, W.B., Hough, J., Germer, T.A., Chen, F., Dassarma, S. et al. (2009). Detection of circular polarization in light scattered from photosynthetic microbes. Proceedings of the National Academy of Sciences 106, 78167821.CrossRefGoogle ScholarPubMed
Stam, D.M. (2008). Spectropolarimetric signatures of Earth-like extrasolar planets. Astron. & Astrophys. 482, 9891007.CrossRefGoogle Scholar
Sterzik, M.F., Bagnulo, S. & Pallé, E. (2012). Biosignatures as revealed by spectropolarimetry of Earthshine. Nature 483, 6466.CrossRefGoogle ScholarPubMed
Swedlund, J.B., Kemp, J.C. & Wolstencroft, R.D. (1972). Circular polarization of Saturn. Astrophys. Journal 178, 257265.CrossRefGoogle Scholar
Tinetti, G., Meadows, V.S., Crisp, D., Fong, W., Fishbein, E. et al. (2006). Detectability of planetary characteristics in disk-averaged spectra. I: The Earth model. Astrobiology 6, 3447.CrossRefGoogle ScholarPubMed
Traub, W.A. & Oppenheimer, B.R. (2010). Direct imaging techniques. In Exoplanets, ed. Seager, S., pp. 111156. University of Arizona Press, Tucson, Arizona.Google Scholar
Williams, D.M. & Gaidos, E. (2008). Detecting the glint of starlight on the oceans of distant planets. Icarus 195, 927937.CrossRefGoogle Scholar
Woolf, N.J., Smith, P.S., Traub, W.A. & Jucks, K.W. (2002). The spectrum of earthshine: a pale blue Dot observed from the ground. Astrophys. J. 574, 430433.CrossRefGoogle Scholar
Xiong, X., Chiang, K., Sun, J., Barnes, W.L., Guenther, B. & Salomonson, V.V. (2009). NASA EOS Terra and Aqua MODIS on-orbit performance. Adv. Space Res. 43, 413422.CrossRefGoogle Scholar
Zalucha, A.M., Michaels, T.I. & Madhusudhan, N. (2013). An investigation of a super-Earth exoplanet with a greenhouse-gas atmosphere using a general circulation model. Icarus 226, 17431761.CrossRefGoogle Scholar
Zugger, M.E., Kasting, J.F., Williams, D.M., Kane, T.J. & Philbrick, C.R. (2010). Light scattering from exoplanet oceans and atmospheres. Astrophys. J. 723, 11681179.CrossRefGoogle Scholar
Zugger, M.E., Kasting, J.F., Williams, D.M., Kane, T.J. & Philbrick, C.R. (2011). Searching for water Earths in the near-infrared. Astrophys. J. 739, 12.CrossRefGoogle Scholar