Published online by Cambridge University Press: 03 June 2011
Laboratory experiments were conducted to determine the effect of descent-engine plumes on the scouring of surface (microbial) contaminants from a spacecraft. A simulated touchdown of a half-scale lander engine and deck configuration was conducted at Mars atmospheric pressure in the NASA Ames Planetary Aeolian Laboratory. Low-density particles were used for the soil simulant to emulate the lower Martian gravity. The underside of the model had small witness plates with controlled microbial surface populations and particle impact detectors. For both steady-state engine thrust (Viking) and pulsed engine thrust (Phoenix), the exhaust plumes from the engines violently excavated the soil and produced particle-laden eddies beneath the lander that sandblasted the lander underside. The result was nearly complete erosion of microbial contaminants from the spacecraft model with their subsequent deposition in the surrounding area. It is concluded that different planetary protection cleanliness levels for different parts of a spacecraft do not necessarily prevent soil contamination because these cleaning strategies evolved without consideration of the effects of the descent engine plumes.