Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T16:09:50.410Z Has data issue: false hasContentIssue false

Directed exospermia: I. Biological modes of resistance to UV light are implied through absorption spectroscopy of DNA and potential UV screens

Published online by Cambridge University Press:  11 June 2007

Andreja Zalar
Affiliation:
Institut National de la Recherche Agronomique, Versailles 78026, France e-mail: tepfer@versailles.inra.fr
David Tepfer
Affiliation:
Institut National de la Recherche Agronomique, Versailles 78026, France e-mail: tepfer@versailles.inra.fr
Søren V. Hoffmann
Affiliation:
Institute for Storage Ring Facilities, University of Aarhus, Aarhus 8000, Denmark
John M. Kenney
Affiliation:
Department of Physics, East Carolina University, Greenville, NC 27858-4353, USA
Sydney Leach
Affiliation:
LERMA, UMR 8112-CNRS, Observatoire de Paris-Meudon, 92195 Meudon, France

Abstract

Panspermia, the dissemination of life through space, would require resistance to the conditions found in space, including UV light. All known life forms depend on DNA to store information. In an effort to understand the liabilities of DNA to UV light and modes of DNA protection in terrestrial life forms, we established UV–VUV (125–340 nm) absorption spectra for dry DNA and its polymerized components and mononucleotides, as well as for a selection of potential UV screens ubiquitous in all organisms, including proteins, selected amino acids and amines (polyamines and tyramine). Montmorillonite clay was included as a potential abiotic UV screen. Among the potential screens tested, adenosine triphosphate (ATP) appeared to be particularly attractive, because its UV absorption spectrum was similar to that of DNA. We suggest that the use of ATP in UV protection could have pre-dated its current role in energy transfer. Spectroscopy also showed that UV absorption varied according to nucleotide content, suggesting that base pair usage could be a factor in adaptation to given UV environments and the availability of UV screens.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, L.Z., Liu, G.X., Zhang, M.X., Chen, T., Liu, Y.H., Feng, H.Y., Xu, S.J., Qiang, W.Y. & Wang, X.L. (2004). Russian J. Plant Physiol. 51, 658–652.CrossRefGoogle Scholar
Apelbaum, A., Canellakis, Z.N., Applewhite, P.B., Kaur-Sawhney, R. & Galston, A.W. (1988). Plant Physiol. 88, 996998.CrossRefGoogle Scholar
Basu, H.S., Schwietert, H.C., Feuerstein, B.G. & Marton, L.J. (1990). Biochemical J. 269, 329334.CrossRefGoogle Scholar
Beigbeder, A., Vavadakis, M., Navakoudis, E. & Kotzabasis, K. (1995). J. Photochem. Photobiol. B: Biol. 28, 235242.CrossRefGoogle Scholar
Bernal, J.D. (1951). The Physical Basis of Life, p. 80. Routledge and Kegan Paul, London.Google Scholar
Bernstein, M. (2006). Phil. Trans. R. Soc. London B: Biol. Sci. 361, 16891702.CrossRefGoogle Scholar
Campos, J.L., Figueras, X., Boronat, A., Pinot, M.T. & Tiburcio, A.F. (1991). Lecture Course on Polyamines as Regulators of Plant Development, eds Galston, G.W. & Tiburcio, C.F., pp. 7880. Fundation Juan March.Google Scholar
Chargaff, E., Lipshitz, R., Green, C. & Hodes, M.E. (1951). J. Biol. Chem. 192, 223230.CrossRefGoogle Scholar
Ciaravella, A., Scappini, F., Franchi, M., Cecchi-Pestellini, C., Barbera, M., Candia, R., Gallori, E. & Micela, G. (2004). Int. J. Astrobiol. 3, 3135.CrossRefGoogle Scholar
Crick, F. (1981). Life Itself. Simon and Schuster, New York.Google Scholar
Crick, F.H.C. & Orgel, L.E. (1973). Icarus 19, 341346.CrossRefGoogle Scholar
Demaneche, S., Bertolla, F., Buret, F., Nalin, R., Sailland, A., Auriol, P., Vogel, T.M. & Simonet, P. (2001). Appl. Environ. Microbiol. 67, 34403444.CrossRefGoogle Scholar
Driks, A. (1999). Microbiol. Mol. Biol. Rev. 63, 120.CrossRefGoogle Scholar
Eden, S., Limão-Vieira, P., Hoffmann, S.V. & Mason, N.J. (2006). Chem. Phys. 323, 313333.CrossRefGoogle Scholar
Falk, M. (1964). J. Amer. Chem. Soc. 86, 12261228.CrossRefGoogle Scholar
Falk, M., Hartman, K.A. & Lord, R.C. (1963). J. Amer. Chem. Soc. 85, 391394.CrossRefGoogle Scholar
Ferris, J.P., Hill, A.R. Jr., Liu, R. & Orgel, L.E. (1996). Nature 381, 5961.CrossRefGoogle Scholar
Flink, I. & Pettijohn, D.E. (1975). Nature 253, 6263.CrossRefGoogle Scholar
Foldvari, I., Fekete, A. & Corradi, G. (1981). J. Biochem. Biophys. Meth. 5, 319327.CrossRefGoogle Scholar
Gallori, E., Bazzicalupo, M., Dal Canto, L., Fani, R., Nannipieri, P., Vettori, C. & Stotzky, G. (1994). FEMS Microbiol. Ecol. 15, 119126.CrossRefGoogle Scholar
Galtier, N. & Lobry, J.R. (1997). J. Mol. Evolution 44, 632636.CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, N.C. (1986). Nature 322, 509511.CrossRefGoogle Scholar
Inagaki, T., Hamm, R., Arakawa, E. & Painter, L. (1974). J. Chem. Phys. 61, 42464250.CrossRefGoogle Scholar
Isaacson, M. (1972). J. Chem. Phys. 56, 18031812.CrossRefGoogle Scholar
Ito, A. & Ito, T. (1986). Photochem. Photobiol. 44, 355358.CrossRefGoogle Scholar
Leach, S., Smith, I.W. & Cockell, C.S. (2006). Phil. Trans. R. Soc. London B 361, 16751679.CrossRefGoogle Scholar
Lewis, D.G. & Johnson, W.C. Jr. (1974). J. Mol. Biol. 86, 9196.CrossRefGoogle Scholar
Lorenz, M.G. & Wackernagel, W. (1994). Microbiol. Rev. 58, 563602.CrossRefGoogle Scholar
Marmur, J. & Doty, P. (1962). J. Mol. Biol. 5, 109118.CrossRefGoogle Scholar
Martin-Tanguy, J. (1985). Plant Growth Regulation 3, 381399.CrossRefGoogle Scholar
Martin-Tanguy, J. (1997). Physiologia Plantarum 100, 675688.CrossRefGoogle Scholar
Martin-Tanguy, J. (2001). Plant Growth Regulation 34, 135148.CrossRefGoogle Scholar
Martin-Tanguy, J., Tepfer, D. & Burtin, D. (1991). Plant Sci. 80, 131144.CrossRefGoogle Scholar
Martin-Tanguy, J., Tepfer, D., Paynot, M., Burtin, D., Heisler, L. & Martin, C. (1990). Plant Physiol. 92, 912918.CrossRefGoogle Scholar
Paget, E., Jocteur-Monrozier, L. & Simonet, P. (1992). FEMS Microbiol. Lett. 97, 3139.CrossRefGoogle Scholar
Pohjanpelto, P. & Holtta, E. (1996). The EMBO Journal 15, 11931200.CrossRefGoogle Scholar
Riesenman, P.J. & Nicholson, W.L. (2000). Appl. Environ. Microbiol. 66, 620626.CrossRefGoogle Scholar
Rode, B.M. (1999). Peptides 20, 773786.CrossRefGoogle ScholarPubMed
Romanowski, G., Lorenz, M.G. & Wackernagel, W. (1991). Appl. Environ. Microbiol. 57, 10571061.CrossRefGoogle Scholar
Scappini, F., Casadei, F., Zamboni, R., Franchi, M., Gallori, E. & Monti, S. (2004). Int. J. Astrobiol. 3, 1719.CrossRefGoogle Scholar
Schuber, F., Hong, K., Duzgunes, N. & Papahadjopoulos, D. (1983). Biochemistry 22, 61346140.CrossRefGoogle Scholar
Sontag, W. & Weibezahn, K.F. (1975). Radiation Environ. Biophys. 12, 169174.CrossRefGoogle Scholar
Tassoni, A., Antognoni, F. & Bagni, N. (1996). Plant Physiol. 110, 817824.CrossRefGoogle Scholar
Tepfer, D. & Leach, S. (2006). Astrophys. Space Sci. 306, 6975.CrossRefGoogle Scholar
Tepfer, D. & Martin-Tanguy, J. (1991). Rice Biotech. Quart. 6, 4344.Google Scholar
Voet, D., Gratzer, W.B., Cox, R.A. & Doty, P. (1963). Biopolymers 1, 193208.CrossRefGoogle Scholar
Wang, R.H., Tao, L., Trumbore, M.W. & Berger, S.L. (1997). J. Biol. Chem. 272, 26 40526 412.CrossRefGoogle Scholar
Wickramasinghe, C. (2004). Cryobiology 48, 113125.CrossRefGoogle Scholar
Wickramasinghe, N.C. & Wickramasinghe, J.T. (2003). Astrophys. Space Sci. 286, 453459.CrossRefGoogle Scholar
Yamada, T. & Fukutome, H. (1968). Biopolymers 6, 4354.CrossRefGoogle Scholar
Zahradka, K., Slade, D., Bailone, A., Sommer, S., Averbeck, D., Petranovic, M., Lindner, A.B. & Radman, M. (2006). Nature 443, 569573.CrossRefGoogle Scholar
Zalar, A., Tepfer, D., Hoffmann, S. V., Kollmann, A. & Leach, S. (2007). Int. J. Astrobiol., in press.Google Scholar