Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T15:46:25.264Z Has data issue: false hasContentIssue false

Biochip-based instruments development for space exploration: influence of the antibody immobilization process on the biochip resistance to freeze-drying, temperature shifts and cosmic radiations

Published online by Cambridge University Press:  28 June 2016

G. Coussot*
Affiliation:
Institut des Biomolécules Max Mousseron-IBMM, Centre National de la Recherche Scientifique, Université de Montpellier, Unité Mixte de Recherche 5247, Faculté de Pharmacie, 34093 Montpellier cedex 5, France
C. Faye
Affiliation:
COLCOM, Cap Alpha, 34830 Clapiers, France
M. Baqué
Affiliation:
German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany
A. Le Postollec
Affiliation:
Université de Bordeaux, LAB, UMR 5804, F-33270 Floirac, France CNRS, LAB, UMR 5804, F-33270 Floirac, France
S. Incerti
Affiliation:
University of Bordeaux, CENBG, UMR 5797, F-33170 Gradignan, France
M. Dobrijevic
Affiliation:
Université de Bordeaux, LAB, UMR 5804, F-33270 Floirac, France CNRS, LAB, UMR 5804, F-33270 Floirac, France
O. Vandenabeele-Trambouze
Affiliation:
Université de Bretagne Occidentale (UBO, UEB), IUEM–UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Plouzané, France Ifremer, UMR6197, LMEE, Plouzané, France

Abstract

Due to the diversity of antibody (Ab)-based biochips chemistries available and the little knowledge about biochips resistance to space constraints, immobilization of Abs on the surface of the biochips dedicated to Solar System exploration is challenging. In the present paper, we have developed ten different biochip models including covalent or affinity immobilization with full-length Abs or Ab fragments. Ab immobilizations were carried out in oriented/non-oriented manner using commercial activated surfaces with N-hydroxysuccinic ester (NHS-surfaces) or homemade surfaces using three generations of dendrimers (dendrigraft of poly L-lysine (DGL) surfaces). The performances of the Ab -based surfaces were cross-compared on the following criteria: (i) analytical performances (expressed by both the surface density of immobilized Abs and the amount of antigens initially captured by the surface) and (ii) resistance of surfaces to preparation procedure (freeze-drying, storage) or spatial constraints (irradiation and temperature shifts) encountered during a space mission. The latter results have been expressed as percentage of surface binding capacity losses (or percentage of remaining active Abs). The highest amount of captured antigen was achieved with Ab surfaces having full-length Abs and DGL-surfaces that have much higher surface densities than commercial NHS-surface. After freeze-drying process, thermal shift and storage sample exposition, we found that more than 80% of surface binding sites remained active in this case. In addition, the resistance of Ab surfaces to irradiation with particles such as electron, carbon ions or protons depends not only on the chemistries (covalent/affinity linkages) and strategies (oriented/non-oriented) used to construct the biochip, but also on the type, energy and fluence of incident particles. Our results clearly indicate that full-length Ab immobilization on NHS-surfaces and DGL-surfaces should be preferred for potential use in instruments for planetary exploration.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

* These authors are now working in private companies.

References

Angenendt, P. (2005). Progress in protein and antibody microarray technology. Drug Discov. Today 10(7), 503511.Google Scholar
Baqué, M., Le Postollec, A., Coussot, G., Moreau, T., Desvignes, I., Incerti, S., Moretto, P., Dobrijevic, M. & Vandenabeele-Trambouze, O. (2011). Biochip for astrobiological applications: investigation of low energy protons effects on antibody performances. Planet. Space Sci. 59(13), 14901497.Google Scholar
Baqué, M., Dobrijevic, M., Le Postollec, A., Moreau, T., Faye, C., Vigier, F., Incerti, S., Coussot, G., Caron, J. & Vandenabeele-Trambouze, O. (2015). Irradiation effects on antibody performance in the frame of biochip-based instruments development for space exploration. Int. J. Astrobiol. Accepted in September, 2015. doi:10.1017/S1473550415000555 Google Scholar
Batalla, P., Fuentes, M., Mateo, C., Grazu, V., Fernandez-Lafuente, R. & Guisan, J.M. (2008). Covalent immobilization of antibodies on finally inert support surfaces through their surface regions having the highest densities in carboxyl groups. Biomacromolecules 9(8), 22302236.Google Scholar
Batalla, P., Mateo, C., Grazu, V., Fernandez-Lafuente, R. & Guisan, J.M. (2009). Immobilization of antibodies through the surface regions having the highest density in lysine groups on finally inert support surfaces. Process Biochem. 44, 365368.Google Scholar
Butler, J.E. (2000). Solid supports in enzyme-linked immunosorbent assay and other solid-phase immunoassays. Methods 22(1), 423.Google Scholar
Butler, J.E. (2004). Solid supports in enzyme-linked immunosorbent assay and other solid-phase immunoassays. Methods Mol. Med. 94, 333372.Google ScholarPubMed
Collet, H., Souaid, E., Cottet, H., Deratani, A., Boiteau, L., Dessalces, G., Rossi, J.C., Commeyras, A. & Pascal, R. (2010). An expeditious multigram-scale synthesis of lysine dendrigraft (DGL) polymers by aqueous N-carboxyanhydride polycondensation. Chemistry 16(7), 23092316.Google Scholar
Commeyras, A., Collet, H., Souaid, E., Cottet, H., Romestang, B. & Vandenabeele-Trambouze, O. (2006) procede de preparation de polylysines dendrimeres greffes. PCT/FR2006/000952, France.Google Scholar
Cottin, H. et al. (2014). Photochemical studies in low Earth orbit for organic compounds related to small bodies, Titan and Mars. Current and future facilities. Bull. Soc. R. Sci. Liège 84, 6073.Google Scholar
Coussot, G., Perrin, C., Moreau, T., Dobrijevic, M., Postollec, A.L. & Vandenabeele-Trambouze, O. (2011a) A rapid and reversible colorimetric assay for the characterization of aminated solid surfaces. Anal. Bioanal. Chem. 399(3), 10611069.Google Scholar
Coussot, G., Faye, C., Ibrahim, A., Ramonda, M., Dobrijevic, M., Postollec, A., Granier, F. & Vandenabeele-Trambouze, O. (2011b) Aminated dendritic surfaces characterization: a rapid and versatile colorimetric assay for estimating the amine density and coating stability. Anal. Bioanal. Chem. 399(6), 22952302.Google Scholar
de Diego-Castilla, G., Cruz-Gil, P., Mateo-Martí, E., Fernández-Calvo, P., Rivas, L.A. & Parro, V. (2011). Assessing antibody microarrays for space missions: effect of long-term storage, gamma radiation, and temperature shifts on printed and fluorescently labeled antibodies. Astrobiology 11(8), 759773.Google Scholar
Dixit, C.K. & Kaushik, A. (2012). Nano-structured arrays for multiplex analyses and Lab-on-a-Chip applications. Biochem. Biophys. Res. Commun. 419(2), 316320.Google Scholar
Faye, C., Chamieh, J., Moreau, T., Granier, F., Faure, K., Dugas, V., Demesmay, C. & Vandenabeele-Trambouze, O. (2012). In situ characterization of antibody grafting on porous monolithic supports. Anal. Biochem. 420(2), 147154.CrossRefGoogle ScholarPubMed
Fuentes, M., Mateo, C., Fernández-Lafuente, R. & Guisán, J.M. (2006). Detection of polyclonal antibody against any area of the protein-antigen using immobilized protein-antigens: the critical role of the immobilization protocol. Biomacromolecules 7(2), 540544.Google Scholar
Gobet, F. et al. (2015). Experimental and Monte Carlo absolute characterization of a medical electron beam. Radiat. Meas 86, 1623. http://dx.doi.org/10.1016/j.radmeas.2016.01.003.Google Scholar
Hassler, D.M. et al. (2012). The radiation assessment detector (RAD) investigation. Space Sci. Rev. 170(1), 503558.Google Scholar
Jonkheijm, P., Weinrich, D., Schröder, H., Niemeyer, C.M. & Waldmann, H. (2008). Chemical strategies for generating protein biochips. Angew. Chem. Int. Ed. Engl. 47(50), 96189647.CrossRefGoogle ScholarPubMed
Jung, Y. et al. (2008). Recent advances in immobilization methods of antibodies on solid supports. Analyst 133, 697701.Google Scholar
Köhler, J. et al. (2014). Measurements of the neutron spectrum on the Martian surface with MSL/RAD. J. Geophys. Res.: Planet. 119(3), 594603.Google Scholar
Kozak, D., Surawski, P., Thoren, K.M., Lu, C.Y., Marcon, L. & Trau, M. (2009). Improving the signal-to-noise performance of molecular diagnostics with PEG-lysine copolymer dendrons. Biomacromolecules 10(2), 360365.CrossRefGoogle ScholarPubMed
Le Postollec, A. et al. (2007). Development of a Biochip dedicated to planetary exploration. First step: resistance studies to space conditions. In Journées SF2A 2007 Semaine de l'Astrophysique Française 2007.Google Scholar
Le Postollec, A. et al. (2009a). Monte Carlo simulation of the radiation environment encountered by a biochip during a space mission to mars. Astrobiology 9(3), 311323.Google Scholar
Le Postollec, A., Coussot, G., Baqué, M., Incerti, S., Desvignes, I., Moretto, P., Dobrijevic, M. & Vandenabeele-Trambouze, O. (2009b) Investigation of neutron radiation effects on polyclonal antibodies (IgG) and fluorescein dye for astrobiological applications. Astrobiology 9(7), 637645.Google Scholar
Liu, X.H., Wang, H.K., Herron, J.N. & Prestwich, G.D. (2000). Photopatterning of antibodies on biosensors. Bioconjug. Chem. 11(6), 755761.Google Scholar
Martins, Z. (2011). In situ biomarkers and the Life Marker Chip. Astron. Geophys. 52(1), 1.341.35.Google Scholar
McKay, C.P. et al. (2013). The icebreaker life mission to mars: a search for biomolecular evidence for life. Astrobiology 13(4), 334353.Google Scholar
McKenna-Lawlor, S., Gonçalves, P., Keating, A., Reitz, G. & Matthiä, D. (2012). Overview of energetic particle hazards during prospective manned missions to Mars. Planet. Space Sci. 63–64, 123132.Google Scholar
Moreau, T., Faye, C., Baqué, M., Desvignes, I., Coussot, G., Pascal, R. & Vandenabeele-Trambouze, O. (2011). Antibody-based surfaces: rapid characterization using two complementary assays. Anal. Chim. Acta 706(2), 354360.Google Scholar
O'Neill, P.M. (2010). Badhwar–O'Neill galactic cosmic ray flux model. IEEE Trans. Nucl. Sci 57(6), 31483153.Google Scholar
Parro, V., Rivas, L.A. & Gómez-Elvira, J. (2008). Protein microarrays-based strategies for life detection in astrobiology. Space Sci. Rev. 135(2008), 293.Google Scholar
Parro, V. et al. (2011). SOLID3: a multiplex antibody microarray-based optical sensor instrument for in situ Life detection in planetary exploration. Astrobiology 11(1), 1528.Google Scholar
Peluso, P. et al. (2003). Optimizing antibody immobilization strategies for the construction of protein microarrays. Anal. Biochem. 312(2), 113124.Google Scholar
Qian, W. et al. (2000). Immobilization of antibodies on ultraflat polystyrene surfaces. Clin. Chem. 46(9), 14561463.Google Scholar
Romestand, B., Rolland, J.L., Commeyras, A., Coussot, G., Desvignes, I., Pascal, R. & Vandenabeele-Trambouze, O. (2010). Dendrigraft poly-L-lysine: a non-immunogenic synthetic carrier for antibody production. Biomacromolecules 11(5), 11691173.Google Scholar
Rusmini, F., Zhong, Z. & Feijen, J. (2007). Protein immobilization strategies for protein biochips. Biomacromolecules 8(6), 17751789.Google Scholar
Sims, M.R. et al. (2012). Development status of the life marker chip instrument for ExoMars. Planet. Space Sci. 72(1), 129137.Google Scholar
Singh, P., Moll, F., Lin, S.H., Ferzli, C., Yu, K.S., Koski, R.K., Saul, R.G. & Cronin, P. (1994). Starburst dendrimers: enhanced performance and flexibility for immunoassays. Clin. Chem. 40(9), 18451849.Google Scholar
Trevisiol, E., Le Berre-Anton, V., Leclaire, J., Pratviel, G., Caminade, A.M., Majoral, J.P., François, J.M. & Meunier, B. (2003). Dendrislides, dendrichips: a simple chemical functionalization of glass slides with phosphorus dendrimers as an effective means for the preparation of biochips. New J. Chem. 27(12), 17131719.Google Scholar
Vigier, F. et al. (2013). Preparation of the Biochip experiment on the EXPOSE-R2 mission outside the International Space Station. Adv. Space Res. 52(12), 21682179.Google Scholar
Wang, W., Singh, S., Zeng, D.L., King, K. & Nema, S. (2007). Antibody structure, instability, and formulation. J. Pharm. Sci. 96(1), 126.Google Scholar
Wängler, C., Moldenhauer, G., Eisenhut, M., Haberkorn, U. & Mier, W. (2008). Antibody-dendrimer conjugates: the number, not the size of the dendrimers, determines the immunoreactivity. Bioconjug. Chem. 19(4), 813820.Google Scholar