Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-12T23:48:36.686Z Has data issue: false hasContentIssue false

Putative fossil life in a hydrothermal system of the Dellen impact structure, Sweden

Published online by Cambridge University Press:  23 April 2010

Paula Lindgren*
Affiliation:
Department of Geological Sciences, Stockholm University, StockholmS-106 91, Sweden
Magnus Ivarsson
Affiliation:
Department of Geological Sciences, Stockholm University, StockholmS-106 91, Sweden
Anna Neubeck
Affiliation:
Department of Geological Sciences, Stockholm University, StockholmS-106 91, Sweden
Curt Broman
Affiliation:
Department of Geological Sciences, Stockholm University, StockholmS-106 91, Sweden
Herbert Henkel
Affiliation:
Kungliga Tekniska Högskolan, Stockholm S-100 44, Sweden
Nils G. Holm
Affiliation:
Department of Geological Sciences, Stockholm University, StockholmS-106 91, Sweden

Abstract

Impact-generated hydrothermal systems are commonly proposed as good candidates for hosting primitive life on early Earth and Mars. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is rarely reported in the literature. Here we present the occurrence of putative fossil microorganisms in a hydrothermal system of the 89 Ma Dellen impact structure, Sweden. We found the putative fossilized microorganisms hosted in a fine-grained matrix of hydrothermal alteration minerals set in interlinked fractures of an impact breccia. The putative fossils appear as semi-straight to twirled filaments, with a thickness of 1–2 μm, and a length between 10 and 100 μm. They have an internal structure with segmentation, and branching of filaments occurs frequently. Their composition varies between an outer and an inner layer of a filament, where the inner layer is more iron rich. Our results indicate that hydrothermal systems in impact craters could potentially be capable of supporting microbial life. This could have played an important role for the evolution of life on early Earth and Mars.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Hanbali, H., Sowerby, S.J. & Holm, N.G. (2001). Earth Planet. Sci. Lett. 191, 213218.CrossRefGoogle Scholar
Ames, D.E., Watkinson, D.H. & Parrish, R.R. (1998). Geology 26, 447450.2.3.CO;2>CrossRefGoogle Scholar
Brock, T.D. (1978). Thermophilic Organisms and Life at High Temperatures. Springer, New York.CrossRefGoogle Scholar
Corliss, J.B., Baross, J.A. & Hoffman, S.E. (1981). Oceanol Acta Sp, 5969.Google Scholar
Corliss, J.B. et al. (1979). Science 203, 10731083.Google Scholar
Dence, M.R., Grieve, R.A.F. & Robertson, P. (1977). Terrestrial impact structures: Principal characteristics and energy considerations. In Impacts and Explosion Cratering, ed. Roddy, D.J., Pepin, R.O. & Merill, R.B., pp. 247276. Pergamon, New York.Google Scholar
Deutsch, A., Buhl, D. & Langenhorst, F. (1992). Tectonophysics 216, 205218.CrossRefGoogle Scholar
Ehrlich, H.L. (1996). Geomicrobiology, 3rd edn, revised and expanded, p. 719. Marcel Dekker, New York.Google Scholar
Emerson, D. & Moyer, C.L. (2002). Appl. Environ. Microbiol. 68, 30853093.Google Scholar
García-Ruiz, J.M., Melero-Garcia, E.M. & Hyde, S.T. (2009). Science 323, 362365.Google Scholar
Geptner, A.R., Ivanovskaya, T.A. & Pokrovskaya, E.V. (2005). Lithol. Min. Resour. 40, 505520.Google Scholar
Gibson, E.K., McKay, D.S., Thomas-Keptra, K.L., Wentworth, S.J., Westall, F., Steele, A., Romanek, C.S., Bell, M.S. & Toporski, J. (2001). Precambrian Res. 106, 1534.CrossRefGoogle Scholar
Glamoclija, M., Schieber, J. & Reimold, W.U. (2007). Microbial signatures from impact-induced hydrothermal settings of the Ries crater, Germany; a preliminary SEM study. In Proc. 38 thLunar and Planetary Science Conf., Houston, Abstract# 1989.Google Scholar
Grenne, T. & Slack, J.F. (2003). Miner. Deposita 38, 625639.CrossRefGoogle Scholar
Henkel, H. (1992). Tectonophysics 216, 6389.Google Scholar
Hode, T., Cady, S.L., von Dalwigk, I. & Kristiansson, P. (2008). Evidence of ancient microbial life in an impact structure and its implications for astrobiology – a case study. In From Fossils to Astrobiology, ed. Sechbach, J. & Walsh, M., pp. 249273. Springer, Netherlands.Google Scholar
Hofmann, B.A., Farmer, J.D., Von Blackenburg, F. & Fallick, A.E. (2008). Astrobiology 8, 87–117.Google Scholar
Ivarsson, M. (2006). Geochem. Trans. 7, 5.Google Scholar
Ivarsson, M. & Holm, N.G. (2008). Microbial colonization of various habitable niches during alteration of oceanic crust. In Links between Geological Processes, Microbial Activities and Evolution of Life, ed. Dilek, Y., Furnes, H. & Muehlenbachs, K., pp. 69–111. Springer Publications, Berlin.Google Scholar
Ivarsson, M., Lausmaa, J., Lindblom, S., Broman, C. & Holm, N.G. (2008). Astrobiology 6, 11391157.Google Scholar
Jŏeleht, A., Kirsimäe, K., Plado, J., Versh, E. & Ivanov, B. (2005). Meteoritics Planet. Sci. 40, 2133.Google Scholar
Kerr, R.A. (2003). Science 302, 1134.Google Scholar
Lindström, M. & von Dalwigk, I. (2002). Part II: Dellen. In Geological Guide to the Lockne and Dellen Impact Structures, Stockholm contributions in geology, 47, pp. 3345. Almquist & Wiksell International, Stockholm.Google Scholar
Little, C.T.S., Herrington, R.J., Maslennikov, V.V. & Zaykov, V.V. (1998). The fossil record of hydrothermal vent communities. In Modern Ocean Floor Processes and the Geological Record, Special Publications, 148, ed. Mills, R.A. & Harrison, K., pp. 258270. Geological Society, London.Google Scholar
Naumov, M.V. (2002). Impact-generated hydrothermal systems: data from Popigai, Kara, and Puchezh-Katunki impact structures. In Impacts in Precambrian Shields, ed. Plado, J. & Peasonen, L.J., pp. 117171. Springer, Berlin.CrossRefGoogle Scholar
Newsom, H.E. (1980). Icarus 44, 207216.CrossRefGoogle Scholar
Parnell, J., Bowden, S.A., Osinski, G.R., Lee, P., Green, P., Taylor, C. & Baron, M. (2007). Geochim. Cosmochim. Acta 71, 18001819.Google Scholar
Parnell, J. et al. (2010). Geology 38, 271274.CrossRefGoogle Scholar
Peckmann, J., Bach, W., Behrens, K. & Reitner, J. (2008). Geobiology 6, 125135.CrossRefGoogle Scholar
Rathbun, J.A. & Squyres, S.W. (2002). Icarus 157, 362372.Google Scholar
Reysenbach, A-L. & Cady, S. (2001). Trends Microbiol. 9, 7986.CrossRefGoogle Scholar
Schiffman, P. & Southard, R.J. (1996). Clay. Clay Miner. 44, 624634.Google Scholar
Schopf, J.W. (1999). Fossils and pseudofossils: lessons from the hunt for early life on Earth, pp. 8893. Space Studies Board, National Research Council, Washington DC.Google Scholar
Schopf, J.W. & Walter, M.R. (1983). Archean microfossils: new evidence of ancient microbes. In Earth′s Earliest Biosphere, its Origin and Evolution, ed. Scopf, J.W., pp. 214239. Princeton University Press, Princeton, NJ.Google Scholar
Schumann, G., Manz, W., Reitner, J. & Lustrino, M. (2004). Geomicrobiol. J. 21, 241246.CrossRefGoogle Scholar
Svensson, N.B. (1968). Geologiska föreningens i Stockholm förhandlingar (GFF) 90, 314316.Google Scholar
Thorseth, I.H., Pedersen, R.B. & Christie, D.M. (2003). Earth Planet. Sci. Lett. 215 237247.Google Scholar
Thorseth, I.H., Torsvik, T., Torsvik, V., Daae, F.L., Pedersen, R.B. & Keldysh-98 Scientific Party. (2001). Earth Planet. Sci. Lett. 194, 3137.Google Scholar
Toporski, J.K.W., Steele, A., Westall, F., Thomas-Keprta, K.L. & McKay, D.S. (2002). Astrobiology 2, 126.Google Scholar
Utada, M. (2001). Zeolites in hydrothermally altered rocks. In Natural Zeolites: Occurrence, Properties, Applications, ed. Bish, D.L. & Ming, D.W., Rev. Mineral. Geochem. 45, 305322.Google Scholar
Versh, E., Kirsimäe, K. & Joeleht, A. (2006). Planet. Space Sci. 54, 15671574.Google Scholar