Skip to main content Accessibility help
Hostname: page-component-59b7f5684b-frvt8 Total loading time: 0.374 Render date: 2022-09-29T10:35:42.832Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Morphometry of volcanic cones on Mars in perspective of Astrobiological Research

Published online by Cambridge University Press:  29 May 2015

Michael Gilichinsky
Department of Forest Resource Management, Swedish University of Agricultural Sciences, Umeå, Sweden. Affiliation at the time of manuscript preparation
Nikita Demidov
Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino 142290, Russia Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
Elizaveta Rivkina*
Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino 142290, Russia


The permanently frozen volcanic sediment is one of the most promising geological objects for searching life on Mars. On Earth, volcanic intrusions into permafrost result in formation of the unique microbial communities. We propose several terrestrial analogues of Martian polar volcanoes, such as the permanently frozen volcanic sediments on the Kamchatka peninsula and in Antarctica. The present study shows applicability of the morphometric analysis for demonstration of the morphological similarity between the terrestrial and Martian cinder cones. In the present work, the morphometric analysis of young Martian landforms is based on the assumption that the conical structures identified on digital terrain model (DTM) are volcanic cinder cones. Morphometric analysis of the studied cones showed a range of degradation. The extent of degradation may be an indicator of age based on comparison with volcanic cinder cones on Earth. A morphometric analysis of potentially young volcanic cones in the North Polar Region of Mars was performed to estimate their relative age. The 14 potential cinder cones were identified using the DTM provided by Mars Express High Resolution Stereo Camera (HRSC), allowing for the basic morphometric calculations. The majority of the cinder cones are localized in the Chasma Boreale region within the area 79°–81°N and 261°–295°E. The calculated morphometric parameters showed that the cone average steepness varied from 3.4° to 11.8°, cone height-to-width ratio varied from 0.025 to 0.12, and the ratio between surface and basal area of the cone varied from 1.005 to 1.131. The studied cinder cones were classified with respect to the morphometric ratios assuming that larger values correspond to the younger structures. Employing the terrestrial analogy of morphometric ratios as a proxy for relative geological age, we suggest that existing microorganisms may be found in permafrost of young Martian cinder cones.

Research Article
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Abramov, A., Gruber, S. & Gilichinsky, D.A. (2008). Mountain permafrost on active volcanoes: field data and statistical mapping, Klyuchevskaya volcano group, Kamchatka, Russia. Permafrost Periglacial Process. 19, 261277.CrossRefGoogle Scholar
Berman, D.C. & Hartmann, W.K. (2002). Recent fluvial, volcanic, and tectonic activity on the Cerberus plains of Mars. Icarus 159, 117.CrossRefGoogle Scholar
Bloomfield, K. (1975). A late-quaternary monogenetic volcanic field in central Mexico. Geologischen Rundschau 64, 476497.CrossRefGoogle Scholar
Broz, P. & Hauber, E. (2012). A unique volcanic field in Tharsis, Mars: pyroclastic cones as evidence for explosive eruptions. Icarus 218, 8899.CrossRefGoogle Scholar
Broz, P., Cadek, O., Hauber, E. & Rossi, A.P. (2014). Shape of scoria cones on Mars: insights from numerical modeling of ballistic pathways. Earth Planet. Sci. Lett. 406, 1423.CrossRefGoogle Scholar
Carr, M.H. (2006). The Surface of Mars. pp. 4376. United States of America, Cambridge University Press, New York.Google Scholar
Cousins, C.R. & Crawford, I.A. (2011). Volcano-ice interaction as a microbial habitat on earth and Mars. Astrobiology 11, 695710.CrossRefGoogle ScholarPubMed
Dohrenwend, J.C., Wells, S.G. & Turrin, B.D. (1986). Degradation of quaternary cinder cones in the Cima volcanic field, Mojave Desert, California. Geol. Soc. Am. Bull. 97, 421427.2.0.CO;2>CrossRefGoogle Scholar
Dóniz, J., Romero, C., Coello, E., Guillén, C., Sánchez, N., García-Cacho, L. & García, A. (2008). Morphological and statistical characterization of recent mafic volcanism on Tenerife (Canary Islands, Spain). J. Volcanol. Geotherm. Res. 173, 185195.CrossRefGoogle Scholar
Fagents, S.A. & Wilson, L. (1996). Numerical modelling of ejecta dispersal from transient volcanic explosions on Mars. Icarus 123, 284295.CrossRefGoogle Scholar
Fishbaugh, K.E. & Head, J.W. (2002). Chasma Boreale, Mars: topographic characterization from Mars Orbiter Laser Altimeter data and implications for mechanisms of formation. J. Geophys. Res. 107, 126.CrossRefGoogle Scholar
Flores, P.A., Amenábar, M.J. & Blamey, J.M. (2013). Hot environments from Antarctica: source of Thermophiles and Hyperthermophiles, with potential biotechnological applications. In Thermophilic Microbes in Environmental and Industrial Biotechnology, ed. Satyanarayana, T., Littlechild, J., Kawarabayasi, Yu., pp. 99118. Springer, Netherlands.CrossRefGoogle Scholar
Garvin, J.B., Sakimoto, S.E.H., Frawley, J.J., Schnetzler, C.C. & Wright, H.M. (2000). Topographic evidence for geologically recent near-polar volcanism on Mars. Icarus 145, 648652.CrossRefGoogle Scholar
Gilichinsky, D.A. & Rivkina, E.M. (2011). Permafrost microbiology. In Encyclopedia of Geobiology, ed. Reitner, J., Thiel, V., pp. 726732. Springer, Verlag.CrossRefGoogle Scholar
Gilichinsky, D. et al. (2007). Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology 7, 275311.CrossRefGoogle ScholarPubMed
Gilichinsky, M., Melnikov, D., Melekestsev, I., Zaretskaya, N. & Inbar, M. (2010). Morphometric measurements of cinder cones from digital elevation models of Tolbachik volcanic field in Central Kamchatka. Can. J. Remote Sens. 36, 287300.CrossRefGoogle Scholar
Gilichinsky, D., Rivkina, E., Vishnivetskaya, T., Gomez, F., Mironov, V., Lamey, J., Ramos, M., de Pablo, A., Castro, M. & Boehmwald, F. (2010). Habitability of Mars: Hyperthermophiles in Permafrost. In 38th COSPAR Scientific Assembly, p. 11.Google Scholar
Hasenaka, T. & Carmichael, I.S.E. (1985). A compilation of location, size, and geomorphological parameters of volcanoes of the Michoacan–Guanajuato volcanic field, central Mexico. Geofis. Int. 24, 577607.Google Scholar
Herbold, C.W., Lee, C.K., McDonald, I.R. & Cary, S.C. (2014). Evidence of global-scale aeolian dispersal and endemism in isolated geothermal microbial communities of Antarctica. Nat. Commun. 5, 3875.CrossRefGoogle ScholarPubMed
Herkenhoff, K. & Plaut, J. (2000). Surface ages and resurfacing rates of the polar layered deposits on Mars. Icarus 144, 243255.CrossRefGoogle Scholar
Hodges, C.A. & Moore, H.J. (1994). Atlas of volcanic landforms on Mars. U.S. Geological Survey Professional Report, pp. 183184.Google Scholar
Hooper, D.M. (1995). Computer-simulation models of scoria cone degradation in the Colima and Michoacan–Guanajuato volcanic fields, Mexico. Geofis. Int. 34, 321340.Google Scholar
Inbar, M. & Risso, C. (2001). A morphological and morphometric analysis of ahigh density cinder cone volcanic field – Payun Matru, south-central Andes, Argentina. Z. Geomorphol. 45, 321343.Google Scholar
Inbar, M., Gilichinsky, M., Melekestsev, I. & Melnikov, D. (2008). A Morphological and Morphometric Study of Cinder Cones in Kamchatka and Golan Heights. Proceedings of the Israel Geological Society Annual Meeting, Nazareth, Israel, p. 44.Google Scholar
Inbar, M., Gilichinsky, M., Melekestsev, I., Melnikov, D. & Zaretskaya, N. (2011). Morphometric and morphological development of Holocene cinder cones: a field and remote sensing study in the Tolbachik volcanic field, Kamchatka. J. Volcanol. Geotherm. Res. 201, 301311.CrossRefGoogle Scholar
Inbar, M., Lugo Hubp, J. & Villers Ruiz, L. (1994). The geomorphological evolution of the Paricutin cone and lava flows, Mexico, 1943–1990. Geomorphology. 9, 57–76.CrossRefGoogle Scholar
Lanz, J.K., Wagner, R., Wolf, U., Kröchert, J. & Neukum, G. (2010). Rift zone volcanism and associated cinder cone field in Utopia Planitia, Mars. J. Geophys. Res. 115, 121.CrossRefGoogle Scholar
Martin del Pozzo, A.L. (1982). Monogenetic vulcanism in Sierra Chichinautzin, Mexico. Bull. Volcanol. 45, 924.CrossRefGoogle Scholar
Mironov, V., Shcherbakova, V., Rivkina, E. & Gilichinsky, D. (2013). Thermophilic bacteria Geobacillus genus from volcanic permafrost sediments. Microbiology 82(3), 389392.CrossRefGoogle Scholar
Mouginis-Mark, P.J., Wilson, L. & Zuber, M.T. (1992). The physical volcanology of Mars in Mars, ed. Kieffer, H.H., Jakosky, B.M., Snyder, C.W. & Matthews, M.S., pp. 424452. University of Arizona Press, Tucson, AZ.Google Scholar
Nemeth, K. (2011). From maars to scoria cones: the enigma of monogenetic volcanic fields, Journal of Volcanology and Geothermal Research. 201, 14.CrossRefGoogle Scholar
Neukum, G. & van Gasselt, S. (2006). Recent volcanism at the Martian north pole. Geophys. Res. Abstr. 8, 11103.Google Scholar
Neukum, G., Jaumann, R., Hoffmann, H., Hauber, E., Head, J.W., Basilevsky, A.T., Ivanov, B.A., Werner, S.C., Van Gasselt, S. & Murray, J.B. (2004). Recent and episodic volcanic and glacial activity on Mars revealed by the high resolution stereo camera. Nature 432, 971979.CrossRefGoogle ScholarPubMed
de Pablo, M.A. & Komatsu, G. (2009) Possible pingo fields in the Utopia basin, Mars: Geological and climatical implications, Icarus, 199, 4974.CrossRefGoogle Scholar
Parfitt, E.A. & Wilson, L. (2008). Fundamentals of Physical Volcanology. Blackwell, Oxford, UK.Google Scholar
Parrot, J.F. (2007). Three-dimensional parameterization: an automated treatment to study the evolution of volcanic cones. Geomorphologie 3, 247258.CrossRefGoogle Scholar
Pondrelli, M., Rossi, A.P., Ori, G.G., van Gasselt, S., Praeg, D. & Ceramicola, S. (2011). Mud volcanoes in Mars Geologic Record: the case of Firsoff Crater, Earth and Planetary Science Letters, 304, 511519.CrossRefGoogle Scholar
Porter, S.C. (1972). Distribution, morphology and size frequency of cinder cones on Mauna Kea volcano, Hawaii. Geol. Soc. Am. Bull. 83, 36073612.CrossRefGoogle Scholar
Scott, D.H. & Trask, N.J. (1971). Geology of the Luna Crater volcanic field, Nye County, Nevada. USGS Professional Paper, 599-I. p. 22.Google Scholar
Segerstrom, K. (1950). Erosion studies at Parícutin, State of Michoacán. Mexico, U.S. Geological Survey Bulletin. 965-A, 1164.Google Scholar
Settle, M. (1979). The structure and emplacement of cinder cone fields. Am. J. Sci. 279, 10891107.CrossRefGoogle Scholar
Warner, N.H. & Farmer, J.D. (2008). The origin of conical mounds at the mouth of Chasma Boreale. J. Geophys. Res. 113, 128.CrossRefGoogle Scholar
Wilson, L. & Head, J.W. (1994). Mars: review and analysis of volcanic eruption theory and relationships to observed landforms. Rev. Geophys. 32, 221264.CrossRefGoogle Scholar
Wolfe, E.W., Ulrich, G.E. & Newhall, C.G. (1987). Geologic Map of the Northwest Part of the San Francisco Volcanic Field, North-central Arizona. USGS Misc. Field Stud. Map, MF1957.Google Scholar
Wood, C.A. (1979). Monogenetic volcanoes of the terrestrial planets. In 10th, Lunar and Planetary Science Conf., Proc., Houston, Texas, 19–23 March, 1979 pp. 2815–2840. Pergamon Press, New York.Google Scholar
Wood, C.A. (1980). Morphometric analysis of cinder cone degradation. J. Volcanol. Geotherm. Res. 8, 137160.CrossRefGoogle Scholar
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Morphometry of volcanic cones on Mars in perspective of Astrobiological Research
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Morphometry of volcanic cones on Mars in perspective of Astrobiological Research
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Morphometry of volcanic cones on Mars in perspective of Astrobiological Research
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *