Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-t4qhp Total loading time: 0.341 Render date: 2022-08-18T04:37:03.265Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Hexagonal plate-like magnetite nanocrystals produced in komatiite–H2O–CO2 reaction system at 450°C

Published online by Cambridge University Press:  22 April 2015

Xi-Luo Hao
Affiliation:
Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
Yi-Liang Li*
Affiliation:
Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
*

Abstract

Batch experiments of komatiite–H2O–CO2 system with temperatures from 200 to 450°C were performed to simulate the interactions between the newly formed ultramafic crust and the proto-atmosphere on Earth before the formation of its earliest ocean. Particularly, magnetite nanocrystals were observed in the experiment carried out at 450°C that are characterized by their hexagonal platelet-like morphology and porous structure. Exactly the same set of lattice fringes on the two opposite sides of one pore suggests post-crystallization erosion. The results demonstrate that magnetite could be produced by the direct interactions between the ultramafic rocky crust and the atmosphere before the formation of the ocean on the Hadean Earth. These magnetite nanoparticles could serve as a catalyst in the synthesis of simple organic molecules during the organochemical evolution towards life.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, I., Sheppard, R.A., Gude, A.J., Rapp, J.B. & Oneil, J.R. (1972). Metamorphic assemblages and direction of flow of metamorphic fluids in 4 instances of serpentinization. Contrib. Miner. Petrol 35(3), 263276.CrossRefGoogle Scholar
Berndt, M.E., Allen, D.E. & Seyfried, W.E. (1996). Reduction of CO2 during serpentinization of olivine at 300°C and 500 bar. Geology 24(4), 351354.2.3.CO;2>CrossRefGoogle Scholar
Berry, A.J., Danyushevsky, L.V., O'Neill, H.SC., Newville, M. & Sutton, S.R. (2008) Oxidation state of iron in komatiitic melt inclusions indicates hot Archaean mantle. Nature 455, 960963.CrossRefGoogle Scholar
Bethke, C.M. (1996). Geochemical Reaction Modeling. Oxford University Press, New York.Google Scholar
Chen, Q.W. & Bahnemann, D.W. (2000). Reduction of carbon dioxide by magnetite: implications for the primordial synthesis of organic molecules. J. Am. Chem. Soc. 122(5), 970971.CrossRefGoogle Scholar
Condie, K.C. (1980). Origin and early development of the Earth's crust. Precambrian Res. 11(3–4), 183197.CrossRefGoogle Scholar
Foustoukos, D.I. & Seyfried, W.E. (2004). Hydrocarbons in hydrothermal vent fluids: the role of chromium-bearing catalysts. Science 304, 10021005.CrossRefGoogle ScholarPubMed
Frost, B.R. (1985). On the stability of sulfides, oxides, and native metals in serpentinite. J Petrol 26(1), 3163.CrossRefGoogle Scholar
Fruth-Green, G.L., Connolly, J.A.D., Plas, A., Kelley, D.S. & Grobety, B. (2004). Serpentinization of oceanic peridotites: implications for geochemical cycles and biological activity. Geophys. Monogr. Ser. 144, 119136.Google Scholar
Fu, Q., Lollar, B.S., Horita, J., Lacrampe-Couloume, G. & Seyfried, W.E. (2007). Abiotic formation of hydrocarbons under hydrothermal conditions: constraints from chemical and isotope data. Geochim. Cosmochim. Acta 71(8), 19821998.CrossRefGoogle Scholar
Holm, N.G. & Andersson, E.M. (1998). Hydrothermal systems. In The Molecular Origins of Life, Assembling Pieces of the Puzzle, ed. Brack, A., pp. 8699. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Holm, N.G., Dumont, M., Ivarsson, M. & Konn, C. (2006). Alkaline fluid circulation in ultramafic rocks and formation of nucleotide constituents: a hypothesis. Geochem. Trans. 7, 7. doi: 10.1186/1467-4866-7-7.CrossRefGoogle ScholarPubMed
Horita, J. & Berndt, M.E. (1999). Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285(5430), 10551057.CrossRefGoogle ScholarPubMed
Klein, F. & Bach, W. (2009). Fe–Ni–Co–O–S phase relations in peridotite–seawater interactions. J. Petrol 50(1), 3759.CrossRefGoogle Scholar
Klein, F., Bach, W., Jons, N., McCollom, T., Moskowitz, B. & Berquo, T. (2009). Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15 degrees N on the Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 73(22), 68686893.CrossRefGoogle Scholar
Lee, M.D., Lee, J.F. & Chang, C.S. (1990). Catalytic behavior and phase-composition change of iron catalyst in hydrogenation of carbon-dioxide. J. Chem. Eng. Jpn. 23(2), 130136.CrossRefGoogle Scholar
Liu, L.G. (2004). The inception of the oceans and CO2-atmosphere in the early history of the Earth. Earth Planet. Sci. Lett. 227(3–4), 179184.CrossRefGoogle Scholar
Marcaillou, C., Munoz, M., Vidal, O., Parra, T. & Harfouche, M. (2011). Mineralogical evidence for H2 degassing during serpentinization at 300°C/300 bar. Earth Planet. Sci. Lett. 303(3–4), 281290.CrossRefGoogle Scholar
Martin, H., Albarede, F., Claeys, P., Gargaud, M., Marty, B., Morbidelli, A. & Pinti, D.L. (2006). Building of a habitable planet. Earth Moon Planets 98(1–4), 97151.CrossRefGoogle Scholar
Martin, W. & Russell, M.J. (2007). On the origin of biochemistry at an alkaline hydrothermal vent. Philos. Trans. R. Soc. B 362(1486), 18871925.CrossRefGoogle ScholarPubMed
McCollom, T.M. & Seewald, J.S. (2003a). Experimental constraints on the hydrothermal reactivity of organic acids and acid anions: I. Formic acid and formate. Geochim. Cosmochim. Acta 67(19), 36253644.CrossRefGoogle Scholar
McCollom, T.M. & Seewald, J.S. (2003b). Experimental study of the hydrothermal reactivity of organic acids and acid anions: II. Acetic acid, acetate, and valeric acid. Geochim. Cosmochim. Acta 67(19), 36453664.CrossRefGoogle Scholar
McCollom, T.M. & Seewald, J.S. (2004). Experimental study of abiotic formation of organic compounds in hydrothermal systems. Geochim. Cosmochim. Acta 68(11), A259A259.Google Scholar
McCollom, T.M. & Seewald, J.S. (2007). Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. Chem. Rev. 107(2), 382401.CrossRefGoogle ScholarPubMed
McCollom, T.M. & Seewald, J.S. (2013). Serpentinites, hydrogen, and life. Elements 9(2), 129134.CrossRefGoogle Scholar
McCollom, T.M., Seewald, J.S. & Simoneit, B.R.T. (2001). Reactivity of monocyclic aromatic compounds under hydrothermal conditions. Geochim. Cosmochim. Acta 65(3), 455468.CrossRefGoogle Scholar
Moody, J.B. (1976 ). Serpentinization: a review. Lithos 9(2), 125138.CrossRefGoogle Scholar
Nisbet, E.G. (1987). The young Earth: An Introduction to Archaean Geology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Nisbet, E.G. & Fowler, C.M.R. (1996). Some liked it hot. Nature 382, 404405.CrossRefGoogle Scholar
Nisbet, E.G. et al. (1987). Uniquely fresh 2.7 Ga komatiites from the Belingwe Greenstone-Belt, Zimbabwe. Geology 15(12), 11471150.2.0.CO;2>CrossRefGoogle Scholar
Normand, C., Williams-Jones, A.E., Martin, R.F. & Vali, H. (2002). Hydrothermal alteration of olivine in a flow-through autoclave: nucleation and growth of serpentine phases. Am. Mineral. 87(11–12), 16991709.CrossRefGoogle Scholar
Pizzarello, S. (2012). Catalytic syntheses of amino acids and their significance for nebular and planetary chemistry. Meteorit. Planet. Sci. 47(8), 12911296.CrossRefGoogle Scholar
Russell, M.J., Hall, A.J. & Turner, D. (1989) In vitro growth of iron sulphide chimneys: possible culture chambers for origin-of-life experiments. Terra Nova 1, 238241.CrossRefGoogle Scholar
Russell, M.J., Daniel, R.M., Hall, A.J. & Sherringham, J.A. (1994) A hydrothermally precipitated catalytic iron sulfide membrane as a first step toward life. J. Mol. Evol. 39(3), 231243.CrossRefGoogle Scholar
Russell, M.J., Hall, A.J. & Martin, W. (2010) Serpentinization as a source of energy at the origin of life. Geobiology 8(5), 355371.CrossRefGoogle ScholarPubMed
Satterfield, C.N., Hanlon, R.T., Tung, S.E., Zou, Z.M. & Papaefthymiou, G.C. (1986a). Effect of water on the iron-catalyzed Fischer–Tropsch synthesis. Ind. Eng. Chem. Prod. Res. Dev. 25(3), 407414.CrossRefGoogle Scholar
Satterfield, C.N., Hanlon, R.T., Tung, S.E., Zou, Z.M. & Papaefthymiou, G.C. (1986b). Initial behavior of a reduced fused-magnetite catalyst in the Fischer–Tropsch synthesis. Ind. Eng. Chem. Prod. Res. Dev. 25(3), 401407.CrossRefGoogle Scholar
Schulte, M., Blake, D., Hoehler, T. & Mccollom, T. (2006). Serpentinization and its implications for life on the early Earth and Mars. Astrobiology 6(2), 364376.CrossRefGoogle ScholarPubMed
Seewald, J.S., Zolotov, M.Y. & McCollom, T. (2006) Experimental investigation of single carbon compounds under hydrothermal conditions. Geochim. Cosmochim. Acta 70(2), 446460.CrossRefGoogle Scholar
Seyfried, W.E. & Foustoukos, D.I. & Fu, Q. (2007). Redox evolution and mass transfer during serpentinization: an experimental and theoretical study at 200°C, 500 bar with implications for ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges. Geochim. Cosmochim. Acta 71(15), 38723886.CrossRefGoogle Scholar
Sleep, N.H. (2010). The Hadean-Archaean Environment. Cold Spring Harb Perspect. Biol. 2(6), a002527.CrossRefGoogle ScholarPubMed
Sleep, N.H., Meibom, A., Fridriksson, T., Coleman, R.G. & Bird, D.K. (2004). H2-rich fluids from serpentinization: geochemical and biotic implications. Proc. Natl. Acad. Sci. USA 101(35), 1281812823.CrossRefGoogle ScholarPubMed
Sleep, N.H., Bird, D.K. & Pope, E.C. (2011). Serpentinite and the dawn of life. Philos. Trans. R. Soc. B 366(1580), 28572869.CrossRefGoogle ScholarPubMed
Swathi, R.S. & Sebastian, K.L. (2008). Molecular mechanism of heterogeneous catalysis. Resonance 13(6), 548560.CrossRefGoogle Scholar
Valley, J.W. et al. (2014). Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nat. Geosci. 7, 219223.CrossRefGoogle Scholar
Walker, J.C.G. (1985). Carbon-dioxide on the early Earth. Origins Life Evol. B 16(2), 117127.CrossRefGoogle ScholarPubMed
Wilde, S.A., Valley, J.W., Peck, W.H. & Graham, C.M. (2001). Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409(6817), 175178.CrossRefGoogle ScholarPubMed
Yoshida, T., Nishizawa, K., Tabata, M., Abe, H., Kodama, T., Tsuji, M. & Tamaura, Y. (1993). Methanation of CO2 with H2-reduced magnetite. J. Mater. Sci. 28(5), 12201226.CrossRefGoogle Scholar
Zahnle, K., Arndt, N., Cockell, C.S., Halliday, A., Nisbet, E., Selsis, F. & Sleep, N.H. (2007). Emergence of a habitable planet. Space Sci. Rev. 129(1–3), 3578.CrossRefGoogle Scholar
Zahnle, K.J. (2006). Earth's earliest atmosphere. Elements 2(4), 217222.CrossRefGoogle Scholar
7
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Hexagonal plate-like magnetite nanocrystals produced in komatiite–H2O–CO2 reaction system at 450°C
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Hexagonal plate-like magnetite nanocrystals produced in komatiite–H2O–CO2 reaction system at 450°C
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Hexagonal plate-like magnetite nanocrystals produced in komatiite–H2O–CO2 reaction system at 450°C
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *