Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-hd9dq Total loading time: 0.396 Render date: 2022-09-30T14:33:45.996Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Directed exospermia: II. VUV-UV spectroscopy of specialized UV screens, including plant flavonoids, suggests using metabolic engineering to improve survival in space

Published online by Cambridge University Press:  13 August 2007

Andreja Zalar
Affiliation:
Institut National de la Recherche Agronomique, Versailles 78026, France e-mail: tepfer@versailles.inra.fr
David Tepfer
Affiliation:
Institut National de la Recherche Agronomique, Versailles 78026, France e-mail: tepfer@versailles.inra.fr
Søren V. Hoffmann
Affiliation:
Institute for Storage Ring Facilities, University of Aarhus, Aarhus 8000, Denmark
Albert Kollmann
Affiliation:
Institut National de la Recherche Agronomique, Versailles 78026, France e-mail: tepfer@versailles.inra.fr
Sydney Leach
Affiliation:
LERMA, UMR 8112-CNRS, Observatoire de Paris-Meudon, 92195 Meudon, France

Abstract

We used synchrotron light to determine VUV-UV absorption spectra (125–340 nm) of thin films of substances associated with UV resistance in specific groups of organisms or across limited phylogenetic boundaries: scytonemin, mycosporine-like amino acids, dipicolinic acid, β-carotene, melanin and flavonoids (quercitrin, isoquercitrin, robinin and catechin). The objective was to extend known UV absorption spectra into the vacuum UV, and to evaluate the likely effectiveness of these molecules in shielding DNA from the unfiltered solar UV found in space, using similarity with DNA absorption spectra as the primary criterion. The spectroscopy indicated that plant flavonoids would be ideal UV screens in space. We suggest that flavonoids represent primitive UV screens, and offer explanations (including horizontal gene transfer) for their presence in plants. We also discuss the possibility of improving UV resistance by increasing flavonoid accumulation through metabolic engineering, in the hope of better adapting life for space travel, i.e. for its dissemination away from the Earth (exospermia). Finally, we propose using plant seeds as exospermia vehicles for sending life (including artificial life) into space.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, G.A. (1994). J. Bacteriol. 176, 47954802.CrossRefGoogle Scholar
Bebout, B.M. & Garcia-Pichel, F. (1995). Appl. Environ. Microbiol. 61, 42154222.Google Scholar
Berg, P.E. & Grecz, N. (1970). J. Bacteriol. 103, 517519.Google Scholar
Castenholz, R. & Garcia-Pichel, F. (2000). The Ecology of Cyanobacteria, ed. Potts, M. & Whittton, B.A., pp. 591611. Kluwer Academic Publishers, Dordrecht.Google Scholar
Clancy, C.M.R., Nofsinger, J.B., Hanks, R.K. & Simon, J.D. (2000). J. Phys. Chem. B 104, 78717873.CrossRefGoogle Scholar
Cockell, C.S. & Knowland, J. (1999). Biol. Rev. Cambr. Philos. Soc. 74, 311345.CrossRefGoogle Scholar
Crick, F. (1981). Life Itself. Simon and Schuster, New York.Google Scholar
Crick, F.H.C. & Orgel, L.E. (1973). Icarus 19, 341346.CrossRefGoogle Scholar
Dixon, R.A., Howles, P.A., Lamb, C., He, X.Z. & Reddy, J.T. (1998). Adv. Exp. Med. Biol. 439, 5566.CrossRefGoogle Scholar
Douki, T., Setlow, B. & Setlow, P. (2005). Photochem. Photobiol. Sci. 4, 591597.CrossRefGoogle Scholar
Duc le, H., Fraser, P.D., Tam, N.K. & Cutting, S.M. (2006). FEMS Microbiol. Lett. 255, 215224.CrossRefGoogle Scholar
Eden, S., Limão-Vieira, P., Hoffmann, S.V. & Mason, N.J. (2006). Chem. Phys. 323, 313333.CrossRefGoogle Scholar
Everett, S.A., Kundu, S.C., Maddix, S. & Willson, R.L. (1995). Biochem. Soc. Trans. 23, 230S.CrossRefGoogle Scholar
Firmin, J., Wilson, K., Rossen, L. & Johnston, A.W.B. (1986). Nature 324, 9092.CrossRefGoogle Scholar
Garcia-Pichel, F. & Castenholz, R.W. (1991). J. Phycology 27, 395409.CrossRefGoogle Scholar
Garcia-Pichel, F. & Castenholz, R.W. (1993). Appl. Environ. Microbiol. 59, 163169.Google Scholar
Garcia-Pichel, F., Sherry, N.D. & Castenholz, R.W. (1992). Photochem. Photobiol. 56, 1723.CrossRefGoogle Scholar
Garcia-Pichel, F., Wingard, C.E. & Castenholz, R.W. (1993). Appl. Environ. Microbiol. 59, 170176.Google Scholar
Germaine, G.R. & Murrell, W.G. (1973). Photochem. Photobiol. 17, 145154.CrossRefGoogle Scholar
Grecz, N., Tang, T. & Frank, H.A. (1973). J. Bacteriol. 113, 10581060.Google Scholar
Hinojosa-Rebollar, E., Rangel-Mandujano, A., Ortigoza-Ferado, J., Mesta-Howard, A.M. & Hernandez-Rodriguez, C. (1993). Revista Latinoamer. Microbiol. 35, 399406.Google Scholar
Horneck, G., Rettberg, P., Reitz, G., Wehner, J., Eschweiler, U., Strauch, K., Panitz, C., Starke, V. & Baumstark-Khan, C. (2001). Orig. Life Evol. Biosph. 31, 527547.CrossRefGoogle Scholar
Li, J., Ou-Lee, T.M., Raba, R., Amundson, R.G. & Last, R.L. (1993). Plant Cell 5, 171179.CrossRefGoogle Scholar
Lindsay, J.A. & Murrell, W.G. (1983). Biochem. Biophys. Res. Commun. 113, 618625.CrossRefGoogle Scholar
Martin, W., Rujan, T., Richly, E., Hansen, A., Cornelsen, S., Lins, T., Leister, D., Stoebe, B., Hasegawa, M. & Penny, D. (2002). Proc. Natl. Acad. Sci. USA 99, 12 24612 251.CrossRefGoogle Scholar
Meredith, P., Powell, B.J., Riesz, J., Nighswander-Rempel, S.P., Pederson, M.R. & Moore, E.G. (2006). Soft Matter 2, 3744.CrossRefGoogle Scholar
Meredith, P. & Riesz, J. (2004). Photochem. Photobiol. 79, 211216.2.0.CO;2>CrossRefGoogle Scholar
Murrell, W.G. (1967). Adv. Microbial Physiol. 1, 133251.CrossRefGoogle Scholar
Nakamura, H., Kobayashi, J. & Hirata, Y. (1982). J. Chromatography 250, 113118.CrossRefGoogle Scholar
Paidhungat, M., Ragkousi, K. & Setlow, P. (2001). J. Bacteriol. 183, 48864893.CrossRefGoogle Scholar
Pezzella, A., Napolitano, A., d'Ischia, M., Prota, G., Seraglia, R. & Traldi, P. (1997). Rapid Commun. Mass Spectrom. 11, 368372.3.0.CO;2-E>CrossRefGoogle Scholar
Proteau, P.J., Gerwick, W.H., Garcia-Pichel, F. & Castenholz, R. (1993). Experientia 49, 825829.CrossRefGoogle Scholar
Riley, P.A. (1997). Int. J. Biochem. Cell Biol. 29, 12351239.CrossRefGoogle Scholar
Routaboul, J.-M., Kerhoas, L., Debeaujon, I., Pourcel, L., Caboche, M., Einhorn, J. & Lepiniec, L. (2006). Planta 224, 96107.CrossRefGoogle Scholar
Setlow, B., Atluri, S., Kitchel, R., Koziol-Dube, K. & Setlow, P. (2006). J. Bacteriol. 188, 37403747.CrossRefGoogle Scholar
Setlow, B. & Setlow, P. (1993). Appl. Environ. Microbiol. 59, 640643.Google Scholar
Setlow, P. (1994). J. Appl. Bacteriol. 76, 49S60S.CrossRefGoogle Scholar
Shick, J.M. & Dunlap, W.C. (2002). Ann. Rev. Physiol. 64, 223262.CrossRefGoogle Scholar
Sinha, R.P. & Hader, D.P. (2002). Adv. Space Res. 30, 15471556.CrossRefGoogle Scholar
Sinha, R.P., Klisch, M., Gröniger, A. & Häder, D.-P. (1998). J. Photochem. Photobiol. B: Biol. 47, 8394.CrossRefGoogle Scholar
Sinha, R.P., Klisch, M. & Hader, D.-P. (1999). J. Photochem. Photobiol. B: Biol. 52, 5964.CrossRefGoogle Scholar
Slieman, T.A. & Nicholson, W.L. (2001). Appl. Environ. Microbiol. 67, 12741279.CrossRefGoogle Scholar
Squier, A.H., Hodgson, D.A. & Keely, B.J. (2004). Organic Geochem. 35, 12211228.CrossRefGoogle Scholar
Takano, S., Nakanishi, D. & Uemura, D. (1979). Chem. Lett. 8, 419420.CrossRefGoogle Scholar
Takano, S., Uemura, D. & Hirata, Y. (1978). Bot. Mar. 23, 6568.Google Scholar
Taylor, A.G. & Harman, G.E. (1990). Ann. Rev. Phytopathol. 28, 321339.CrossRefGoogle Scholar
Tepfer, D. & Leach, S. (2006). Astrophys. Space Sci. 306, 6975.CrossRefGoogle Scholar
Wakamatsu, K. & Ito, S. (2002). Pigment Cell Res. 15, 174183.CrossRefGoogle Scholar
Westall, F., de Ronde, C.E., Southam, G., Grassineau, N., Colas, M., Cockell, C. & Lammer, H. (2006). Phil. Trans. R. Soc. Lond. 361, 18571875.CrossRefGoogle Scholar
Whitehead, K. & Hedges, J.I. (2003). Rapid Commun. Mass Spectrom. 17, 21332138.CrossRefGoogle Scholar
Winkel-Shirley, B. (2001). Plant Physiol. 126, 485493.CrossRefGoogle Scholar
Zalar, A., Tepfer, D., Hoffmann, Søren V., Kenney, J.M. & Leach, S. (2007). Int. J. Astrobiol. 6(3), 229240.CrossRefGoogle Scholar
9
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Directed exospermia: II. VUV-UV spectroscopy of specialized UV screens, including plant flavonoids, suggests using metabolic engineering to improve survival in space
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Directed exospermia: II. VUV-UV spectroscopy of specialized UV screens, including plant flavonoids, suggests using metabolic engineering to improve survival in space
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Directed exospermia: II. VUV-UV spectroscopy of specialized UV screens, including plant flavonoids, suggests using metabolic engineering to improve survival in space
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *