Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-dfw9g Total loading time: 0.588 Render date: 2022-08-17T20:04:35.105Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Calbindin-D28k immunoreactivity in the mice thoracic spinal cord after space flight

Published online by Cambridge University Press:  22 May 2015

Valentina V. Porseva
Affiliation:
Department of Human Anatomy, Yaroslavl State Medical University, Yaroslavl, Russia
Valentin V. Shilkin
Affiliation:
Department of Human Anatomy, Yaroslavl State Medical University, Yaroslavl, Russia
Igor B. Krasnov
Affiliation:
Laboratory of Gravitational Biology, Institute of Biomedical Problems of Russian Academy of Sciences, Moscow, Russia
Petr M. Masliukov*
Affiliation:
Department of Normal Physiology, Yaroslavl State Medical University, Yaroslavl, Russia
*

Abstract

The aim of the work was to analyse changes in the location and morphological characteristics of calbindin (CB)-immunoreactive (IR) neurons of the thoracic spinal cord of C57BL/6N male mice after completion of a 30-day space flight on board the BION-M1 biosatellite (Russia, 2013). Space flight induced multidirectional changes of the number and morphological parameters of CB-positive neurons. The number of IR neurons increased in laminae I (from 10 to 17 neurons per section), II (from 42 to 67 cells per section) and IX (from two neurons per segment to two neurons per section), but CB disappeared in neurons of lamina VIII. Weightlessness did not affect the number of CB-IR neurons in laminae III–V and VII, including preganglionic sympathetic neurons. The cross-sectional area of CB-IR neurons decreased in lamina II and VII (group of partition cells) and increased in laminae III–V and IX. After a space flight, few very large neurons with long dendrites appeared in lamina IV. The results obtained give evidence about substantial changes in the calcium buffer system and imbalance of different groups of CB-IR neurons due to reduction of afferent information under microgravity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Airaksinen, M.S., Thoenen, H. & Meyer, M. (1997). Eur. J. Neurosci. 9, 120127.CrossRefGoogle Scholar
Alvarez, F.J., Benito-Gonzalez, A. & Siembab, V.C. (2013). Ann. N. Y. Acad. Sci. 1279, 2231.CrossRefGoogle Scholar
Andreev-Andrievskii, A.A., Shenkman, B.S., Popova, A.S., Dolgov, O.N., Anokhin, K.V., Soldatov, P.E., Vinogradova, O.L., Ilyin, E.A. & Sychev, V.N. (2014). Aerosp. Environ. Med. 48, 1427.Google Scholar
Baevsky, R.M., Baranov, V.M., Funtova, I.I., Diedrich, A., Pashenko, A.V., Chernikova, A.G., Drescher, J., Jordan, J. & Tank, J. (2007). Appl. Physiol. 103, 156161.CrossRefGoogle Scholar
Baimbridge, K.G., Celio, M.R. & Rogers, J.H. (1992). Trends Neurosci. 15, 303308.CrossRefGoogle Scholar
Barber, R.P., Phelps, P.E., Houser, C.R., Crawford, G.D., Salvaterra, P.M. & Vaughn, J.E. (1984). Comp. Neurol. 229, 329346.CrossRefGoogle Scholar
Bertrand, S.S. & Cazalets, J.R. (2011). Front. Neural Circuits 5, 115.CrossRefGoogle Scholar
Carr, P.A., Alvarez, F.J., Leman, E.A. & Fyffe, R.E. (1998). NeuroReport 9, 26572661.CrossRefGoogle Scholar
Clarke, H.A., Dekaban, G.A. & Weaver, L.C. (1998). Neuroscience 85, 863872.CrossRefGoogle Scholar
Concu, А. (1989). Eur. J. Appl. Physiol. 59, 1015.CrossRefGoogle Scholar
Craig, A.D., Zhang, E.T. & Blomqvist, A. (2002). Pain 97, 105115.CrossRefGoogle Scholar
Deuchars, S.A., Milligan, C.J., Stornetta, R.L. & Deuchars, J. (2005). Neuroscience 25, 10631070.CrossRefGoogle Scholar
Eckberg, D.L. & Neurolab Autonomic Nervous System Team (2003). Acta Physiol. Scand. 177, 299311.CrossRefGoogle Scholar
Fahandejsaadi, A., Leung, E., Rahaii, R., Bu, J. & Geula, C. (2004). NeuroReport 15, 443448.CrossRefGoogle Scholar
Gorbunova, A.V. & Portugalov, V.V. (1976). Aviat. Space Environ. Med. 47, 708710.Google Scholar
Grigoriev, A.I., Koslovakaya, I.B. & Shenkman, B.S. (2004). Ross. Fiziol. J. Im. I.M. Sechenova 90, 508521.Google Scholar
Iacopino, A., Christakos, S., German, D., Sonsalla, P.K. & Altar, C.A. (1992). Brain Res. Mol. Brain Res. 13, 251261.CrossRefGoogle Scholar
Ishihara, A., Yamashiro, J., Matsumoto, A., Higashibata, A., Ishioka, N., Shimazu, T. & Ohira, Y. (2006). Neurochem. Res. 31, 411415.CrossRefGoogle Scholar
Islamov, R.R., Mishagina, E.A., Tyapkina, O.V., Shajmardanova, G.F., Eremeev, A.A., Kozlovskaya, I.B., Nikolskij, E.E. & Grigorjev, A.I. (2011). Acta Astron. 68, 14691477.CrossRefGoogle Scholar
Krasnov, I.B. (1994). Adv. Space Biol. Med. 4, 85110.CrossRefGoogle Scholar
Levine, A.J., Hinckley, C.A., Hilde, K.L., Driscoll, S.P., Poon, T.H., Montgomery, J.M. & Pfaff, S.L. (2014). Nat. Neurosci. 17, 586593.CrossRefGoogle Scholar
Li, X. & Clark, J.D. (2001). Neuroscience 105, 949956.CrossRefGoogle Scholar
Li, Y.N., Sakamoto, H., Kawate, T., Cheng, C.X., Li, Y.C., Shimada, O. & Atsumi, S. (2005). Arch. Histol. Cytol. 68, 5770.CrossRefGoogle Scholar
Masliukov, P.M., Korobkin, A.A., Nozdrachev, A.D. & Timmermans, J.P. (2012). Auton. Neurosci. 167, 2733.CrossRefGoogle Scholar
McKay, S.E. & Oppenheim, R.W. (1991). J. Neurobiol. 22, 721733.CrossRefGoogle Scholar
Molander, C. & Grant, G. (1995). Spinal cord cytoarchitecture. In The Nervous System, ed. Paxinos, G.San Diego: Academic Press, 3944.Google Scholar
Monroy-Gómez, J. & Torres-Fernández, O. (2013). Biomédica 33, 564573.CrossRefGoogle Scholar
Morona, R., Lopez, J.M., Dominguez, L. & Gonzalez, A. (2007). Microsc. Res. Tech. 70, 101118.CrossRefGoogle Scholar
Porseva, V.V., Shilkin, V.V., Korzina, M.B., Smirnova, V.P. & Maslyukov, P.M. (2013). Neurosci. Behav. Physiol. 43, 602606.CrossRefGoogle Scholar
Ren, J.C., Fan, X.L., Song, X.A., Zhao, X.H., Chen, M.X. & Shi, L. (2012). Muscle Nerve 45, 6569.CrossRefGoogle Scholar
Renshaw, B. (1941). J. Neurophysiol. 4, 167183.CrossRefGoogle Scholar
Rexed, B. (1952). Comp. Neurol. 96, 415496.CrossRefGoogle Scholar
Rosenberg, S.S. & Spitzer, N.C. (2011). Calcium signaling in neuronal development. Cold Spring Harb. Perspect. Biol. 3(10), a004259. doi: 10.1101/cshperspect.CrossRefGoogle ScholarPubMed
Sanna, P.P., Celio, M.R., Bloom, F.E. & Rende, M. (1993). Proc. Natl. Acad. Sci. U.S.A. 90, 30483052.CrossRefGoogle Scholar
Sato, T., Miyoshi, T., Nakazawa, K., Yano, H. & Takeoka, H. (2001). Gravit. Physiol. 8, 9799.Google Scholar
Schoenen, J. (1982). Neuroscience 7, 20572087.CrossRefGoogle Scholar
Schwaller, B. (2012). Biochim. Biophys. Acta 1820, 12941303.CrossRefGoogle Scholar
Segizbaeva, M.O., Pogodin, M.A., Lavrov, I.N., Balykin, M.V. & Alexandrov, N.P. (2011). Hum. Physiol. 37, 52591.CrossRefGoogle Scholar
Sidman, R.L., Angevine, J.B. & Pierce, E.T. (1971). Atlas of the Mouse Brain and Spinal Cord. Harvard University Press, Cambridge, MA.Google Scholar
Sojka, D., Zacharova, G., Spicarova, D. & Palecek, J. (2010). Physiol. Res. 59, 10111017.Google Scholar
Sonetti, D.A., Wetter, T.J., Pegelow, D.F. & Dempsey, J.A. (2001). Respir. Physiol. 127, 185199.CrossRefGoogle Scholar
Stepien, A.E., Tripodi, М. & Arber, S. (2010). Neuron 68, 456472.CrossRefGoogle Scholar
Tarabal, O., Caraballo-Miralles, V., Cardona-Rossinyol, A., Correa, F.J., Olmos, G., Lladó, J., Esquerda, J.E. & Calderó, J. (2014). J. Neuropathol. Exp. Neurol. 73, 519535.CrossRefGoogle Scholar
Thirumalai, V., Behrend, R.M., Birineni, S., Liu, W., Blivis, D. & O'Donovan, M.J. (2013). Neurophysiology 109, 702710.CrossRefGoogle Scholar
Venturoli, D., Semino, P., Negrini, D. & Miserocchi, G. (1998). Acta Astronaut. 42, 185204.CrossRefGoogle Scholar
Willis, W.D. & Coggeshall, R.E. (1991). Sensory Mechanisms of the Spinal Cord. Plenum Press, New York.CrossRefGoogle Scholar
Xu, J.H., Yang, Z.B., Wang, H. & Tang, F.R. (2014). Neurosci. Lett. 561, 8085.CrossRefGoogle Scholar
Yin, Q.W., Johnson, J., Prevette, D. & Oppenheim, R.W. (1994). J. Neurosci. 14, 76297640.CrossRefGoogle Scholar
5
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Calbindin-D28k immunoreactivity in the mice thoracic spinal cord after space flight
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Calbindin-D28k immunoreactivity in the mice thoracic spinal cord after space flight
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Calbindin-D28k immunoreactivity in the mice thoracic spinal cord after space flight
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *