Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-26T06:44:33.401Z Has data issue: false hasContentIssue false

The symbiotics as binary stars

Published online by Cambridge University Press:  12 April 2016

Mirek J. Plavec*
Affiliation:
Department of Astronomy, University of California, Los Angeles, CA 90024, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Symbiotic stars have become an important testing ground of various theories of binary star evolution. Several physically different models can explain them, but in each case certain fairly restrictive conditions must be met, so if we manage to identify a definite object with a model, it will tell us a lot about the structure and evolutionary stage of the stars involved. I envisage at least three models that can give us a symbiotic object: I have called them, respectively, the PN symbiotic, the Algol symbiotic, and the novalike symbiotic. Their properties are briefly discussed. The most promising model is one of a binary system in the second stage of mass transfer, actually at the beginning of it: The cool component is a red giant ascending the asymptotic branch, expanding but not yet filling its critical lobe. The hot star is a subdwarf located in the same region of the Hertzsprung-Russell diagram as the central stars of planetary nebulae. It may be closely related to them, or it may be a helium star, actually a remnant of an Algol primary which underwent the first stage of mass transfer. In these cases, accretion on this star may not play a significant role (PN symbiotic).

Type
Session III - Interpretation
Copyright
Copyright © Reidel 1982

References

Bath, G.T.: 1972, Astrohpys. J. 173, 121.Google Scholar
Bath, G.T.: 1977, Mon. Not. R.A.S. 178, 203.Google Scholar
Bath, G.T.: 1978, Mon. Not. R.A.S. 182, 35.Google Scholar
Bath, G.T.: 1981, in Proc. North Amer. Workshop Symbiotic Stars, (ed. Stencel, R.), JILA, 20.Google Scholar
Boyarchuk, A.A.: 1975, in “Variable Stars and Stellar Evolution”, (ed. Sherwood, V. E. and Plaut, L.), Reidel, 377.Google Scholar
Ciatti, F., D’Odorico, S., and Mammano, A.: 1974, Astron. Astrophys. 34, 181.Google Scholar
Cowley, A.P.: 1963, Astrophys. J. 139, 817.CrossRefGoogle Scholar
Harmanec, P.: 1974, in “Late Stages of Stellar Evolution”, (ed. Tayler, R.), Reidel, 195.Google Scholar
Hutchings, J.B., Cowley, A.P., and Redman, R.O.: 1975, Astrophys. J. 201, 404.CrossRefGoogle Scholar
Kenyon, S.J.: 1981, in Proc. North Amer. Workshop Symbiotic Stars, (ed. Stencel, R.), JILA, 21.Google Scholar
Kenyon, S.J., Webbink, R.F., Gallagher, J.S., and Truran, J.W.: 1981, to be published in Astron. Astrophys.Google Scholar
Keyes, C.D., and Plavec, M.J.: 1980, in “Close Binary Stars: Observations and Interpretation”, (ed. Plavec, M.J., Popper, D.M., and Ulrich, R.K.), Reidel, 535.Google Scholar
Kraft, R.P.: 1958, Astrophys. J. 127, 625.Google Scholar
Kurucz, R.L.: 1979, Astrophys. J. Suppl. 40, 1.CrossRefGoogle Scholar
Lee, T.A.: 1970, Astrophys. J. 162, 217.Google Scholar
Mullan, D.J.: 1978, Astrophys. J. 226, 151.Google Scholar
Paczynski, B.: 1965, Acta Astron. 15, 197.Google Scholar
Paczynski, B.: 1971a, Acta Astron. 21, 271.Google Scholar
Paczynski, B.: 1971b, Acta Astron. 21, 11.Google Scholar
Paczynski, B.: 1971c, Acta Astron. 21, 417.Google Scholar
Paczynski, B. and Sienkiewicz, R.: 1972, Acta Astr. 22, 73.Google Scholar
Paczynski, B. and Rudak, B.: 1980, Astron. Astrophys. 82, 349.Google Scholar
Plavec, M.J.: 1973, in “Extended Atmospheres etc.” (ed. Batten, A.H.), Reidel, 216.Google Scholar
Plavec, M.J.: 1980, in “Close Binary Stars: Observations and Interpretation”, (ed. Plavec, M.J., Popper, D.M., and Ulrich, R.K.), Reidel, 251.CrossRefGoogle Scholar
Plavec, M.J.: 1981, in “Effects of Mass Loss on Stellar Evolution”, (ed. Chiosi, C. and Stallo, R.), Reidel, 431.CrossRefGoogle Scholar
Plavec, M.J., Ulrich, R.K., and Polidan, R.S.: 1973, Publ. Astron. Soc. Pacific 85, 769.Google Scholar
Plavec, M.J., Weiland, J.L., Dobias, J.J., and Koch, R.H.: 1981, Bull. Amer. Astron. Soc. 13, 523.Google Scholar
Plavec, M.J., Dobias, J.J., Weiland, J.L., and Stone, R.P.S.: 1981, published in “Be Stars”, (ed. Jaschek, M. and Groth, H.-G.), Reidel; UCLA preprint No. 117.Google Scholar
Pringle, J.E.: 1977, Mon. Not. R.A.S. 178, 195.Google Scholar
Reimers, D.: 1975, Mem. Soc. Roy. Sci. Liege, 6th Serie 8, 369.Google Scholar
Reimers, D. and Kudritzki, R.P.: 1980, in “Second European IUE Conference, Tübingen”, 229.Google Scholar
Slovak, M.H.: 1980, Bull. Amer. Astron. Soc. 12, 868.Google Scholar
Swings, P. and Struve, O.: 1943, Astrophys. J. 98, 91.CrossRefGoogle Scholar
Thackeray, A.D. and Hutchings, J.B.: 1974, Mon. Not. R.A.S. 167, 319.Google Scholar
Tutukov, A.V. and Yungelson, L.R.: 1976, Astrophysics, 12, 342.Google Scholar
Wallerstein, G.: 1980, preprint.CrossRefGoogle Scholar
Webbink, R.F.: 1976, Nature 262, 271.Google Scholar
Webbink, R.F.: 1978, in “Changing Trends in Variable Star Research”, (ed. Bateson, F.M., Smak, J., and Urch, I.H.), Hamilton, N.Z.: Univ. Waikato, 102.Google Scholar
Webbink, R.F.: 1979, in “White Dwarfs and Variable Degenerate Stars”, (ed. Van Horn, H.M. and Weidemann, V.), Rochester: Univ. of Rochester, 426.Google Scholar