Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-22T13:52:09.554Z Has data issue: false hasContentIssue false

Non-Adiabatic Seismic Study of The Thin Convective Envelope of δ Scuti Stars

Published online by Cambridge University Press:  12 April 2016

M.-A. Dupret
Affiliation:
Instituto de Astrofísica de Andalucía-CSIC, Apartado 3004, 18080 Granada, Spain
A. Grigahcène
Affiliation:
Instituto de Astrofísica de Andalucía-CSIC, Apartado 3004, 18080 Granada, Spain
R. Garrido
Affiliation:
Instituto de Astrofísica de Andalucía-CSIC, Apartado 3004, 18080 Granada, Spain
J. Montalban
Affiliation:
Institut d’Astrophysique et de Géophysique, Université de Liège, allée du Six Août 17, B-4000 Liège, Belgium
M. Gabriel
Affiliation:
Institut d’Astrophysique et de Géophysique, Université de Liège, allée du Six Août 17, B-4000 Liège, Belgium
R. Scuflaire
Affiliation:
Institut d’Astrophysique et de Géophysique, Université de Liège, allée du Six Août 17, B-4000 Liège, Belgium

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For δ Sct stars, the theoretical predictions of a non-adiabatic pulsation code are very dependent on the characteristics of the thin convective envelope of the models (Balona & Evers 1999). The treatment of the non-adiabatic interaction between convection and pulsation also has a significant impact on the results, particularly near the red edge of the instability strip. The non-adiabatic theoretical predictions can be tested upon observations by comparing them to the amplitude ratios and phase differences as observed in different color passbands (Dupret et al. 2003). In the first part of this paper, we compare the results obtained by adopting different treatments of convection in the interior and atmosphere models: mixing-length theory (MLT) and full spectrum of turbulence (FST) (Canuto et al. 1996, CGM). In the second part, we examine the problem of the interaction between convection and pulsation and compare the mode stability obtained with and without including time-dependent convection in our non-adiabatic code.

Type
Part 8. New theoretical developments in stellar pulsation and variability
Copyright
Copyright © Astronomical Society of the Pacific 2004

References

Balona, L.A., Evers, E.A. 1999 MNRAS, 302, 349 CrossRefGoogle Scholar
Barban, C., Goupil, M.J., Van’t Veer-Menneret, C., Garrido, R., Kupka, F., Heiter, U. 2003 A&A, 405, 1095 Google Scholar
Canuto, V.M., Goldman, L. Mazzitelli, I. 1996 ApJ, 473, 550 (CGM)CrossRefGoogle Scholar
Dupret, M.-A., De Ridder, J., Neuforge, C., Aerts, C., Scuflaire, R. 2002 A&A, 385, 563 Google Scholar
Dupret, M.-A., De Ridder, J., De Cat, P., Aerts, C., Scuflaire, R., Noels, A., Thoul, A. 2003 A&A, 398, 677 Google Scholar
Gabriel, M. 1996 Bull. Astr. Soc. India, 24, 233 Google Scholar
Gough, D.O. 1977 ApJ, 214, 196 CrossRefGoogle Scholar
Heiter, U., Kupka, F., van’t Veer-Menneret, C, Barban, C., et al. 2002 A&A, 392, 619 Google Scholar
Kurucz, R.L. 1993 ATLAS9 Stellar Atmosphere programs and 2 km/s grids. Kurucz CDROM No 13Google Scholar