Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T15:20:20.026Z Has data issue: false hasContentIssue false

Metal Abundances and Ionization in QSO Broad Emission-Line Regions

Published online by Cambridge University Press:  12 April 2016

F. Hamann
Affiliation:
Center for Astrophysics and Space Sciences, University of California at San Diego, La Jolla, CA 92093, USA
J.C. Shields
Affiliation:
Steward Observatory, University of Arizona, Tucson, AZ 85721, USA
R. D. Cohen
Affiliation:
Center for Astrophysics and Space Sciences, University of California at San Diego, La Jolla, CA 92093, USA
V.T. Junkkarinen
Affiliation:
Center for Astrophysics and Space Sciences, University of California at San Diego, La Jolla, CA 92093, USA
E.M. Burbidge
Affiliation:
Center for Astrophysics and Space Sciences, University of California at San Diego, La Jolla, CA 92093, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We describe two ongoing studies of QSO broad emissionline regions (BELRs). The first employs the N V λ1240/He II λ1640 and N V/C IV λ1549 line ratios as diagnostics of QSO metallicities. Hamann & Ferland and Ferland et al. showed that many observed N V ratios require enhanced N abundances and Z > Z. Here we present new measurements of large line ratios at redshifts z > 4, which indicate super-solar abundances within ~1 Gyr of the Big Bang (for q0 ≈ 0.5). We also note that the N V line is relatively stronger in more luminous QSOs, in contrast to the well-known Baldwin effect in Lyα, C IV, and O VI λ1034. This unusual behavior in N V could be due to a luminosity-metallicity correlation among QSOs that is coupled to a mass-metallicity relation in their host galaxies.

Our second study involves Ne VIII λ774 as a probe of highly ionized gas. We show that a broad emission feature near 774 Å is common in QSOs. Photoionization models indicate that Ne VIII is the most likely identification for this feature. The models also indicate that the Ne VIII emitting gas covers > 40% of the continuum source, has a total hydrogen column density of NH > 1022 cm−2 (for solar abundances) and an ionization parameter of U > 5 (for a nominal QSO continuum shape). This gas would be an X-ray “warm73x201D; absorber — with O VII–O VIII bound-free edges — if it lies along our line-of-sight to the X-ray continuum source.

Type
II. Broad Emission Lines
Copyright
Copyright © Astronomical Society of the Pacific 1997

References

Baldwin, J.A. 1977, ApJ, 214, 679.CrossRefGoogle Scholar
Cohen, R.D., Beaver, E.A., Burbidge, E.M., Diplas, A., Hamann, F., Junkkarinen, V.T., & Lyons, R. 1995 in The Analysis of Emission Lines, ed. Livio, M., STScI Symposium, (Cambridge: New York).Google Scholar
Ferland, G.J., Baldwin, J.A., Korista, K.T., Hamann, F., Carswell, R.F., Phillips, M., Wilkes, B., & Williams, R.E. 1996, ApJ, 461, 683.Google Scholar
Halpern, J.P. 1984, ApJ, 281, 90.CrossRefGoogle Scholar
Hamann, F. 1996, ApJS, in press.Google Scholar
Hamann, F., & Ferland, G.J. 1992, ApJL, 391, L53.Google Scholar
Hamann, F., & Ferland, G.J. 1993, ApJ, 418, 11.CrossRefGoogle Scholar
Hamann, F., Shields, J.C., Ferland, G.J., & Korista, K.T. 1995a, ApJ, 454, 688.Google Scholar
Hamann, F., Zuo, L., & Tytler, D. 1995b, ApJ, 444, L69.Google Scholar
Kinney, A.L., Rivolo, A.R., & Koratkar, A.P. 1990, ApJ, 357, 338.CrossRefGoogle Scholar
Laor, A., Bahcall, J.N., Jannuzi, B.T., Schneider, D.P., & Green, R.F. 1995, ApJS, 99, 1.Google Scholar
Osmer, P.S. 1980, ApJ, 237, 666.Google Scholar
Osmer, P.S., Porter, A.C., & Green, R.F. 1994, ApJ, 436, 678.Google Scholar
Rich, R.M. 1990, ApJ, 362, 604.CrossRefGoogle Scholar
Shields, G.A., 1976, ApJ, 204, 330.CrossRefGoogle Scholar
Shields, J.C., & Hamann, F. 1996, Rev. Mex. Astr. Astrof., (Conference Series), in press.Google Scholar
Tinsley, B.M. 1980, Fund. Cos. Phys., 5, 287.Google Scholar
Uomoto, A. 1984, ApJ, 284, 497.Google Scholar
Véron-Cetty, M.-P., Véron, P., & Tarenghi, M. 1983, A&A, 119, 69.Google Scholar
Zaritsky, D., Kennicutt, R.C. Jr., & Huchra, J.P. 1994, ApJ, 420, 87.Google Scholar
Zheng, W., Kriss, G.A., & Davidson, A.F. 1995, ApJ, 440, 606.Google Scholar