Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T20:49:38.852Z Has data issue: false hasContentIssue false

Mass Distribution in Compact Groups

Published online by Cambridge University Press:  12 April 2016

J. Perea
Affiliation:
Instituto de Astrofísica de Andalucía(CSIC), Granada, Spain
A. del Olmo
Affiliation:
Instituto de Astrofísica de Andalucía(CSIC), Granada, Spain
L. Verdes-Montenegro
Affiliation:
Instituto de Astrofísica de Andalucía(CSIC), Granada, Spain
M. S. Yun
Affiliation:
National Radio Astronomy Observatory, 1, Socorro, NM, USA
W.K. Huchtmeier
Affiliation:
Max-Planck-Institut für Radioastronomie, Bonn, D-53121, Germany
B. A. Williams
Affiliation:
University of Delaware, Newark, Delaware, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

New redshift surveys of galaxies in the field of compact groups have discovered a population of faint galaxies which act as satellites orbiting in the potential well of the bright group. Here we analyze the mass distribution of the groups by comparing the mass derived from the bright members and the mass obtained from the satellite galaxies. Our analysis indicates the presence of a dark halo around the main group with a mass roughly four times that measured for the dominant galaxies of the compact group.

We found that heavier halos are ruled out by the observations when comparing the distribution of positions and redshifts of the satellite galaxies with the distribution of satellites of isolated spiral galaxies. The results agree with a picture where compact groups may form a stable system with galaxies moving in a common dark halo.

Type
Part 5. Dark Matter and Clustering
Copyright
Copyright © Astronomical Society of the Pacific 2000

References

Athanassoula, E., Makino, J., & Bosma, A. 1997, MNRAS, 286, 825.Google Scholar
Bahcall, J.N., & Tremarne, S. 1981, ApJ, 244, 805.Google Scholar
Barnes, J.E., 1989, Nature, 338, 123.Google Scholar
Barton, E.J., De Carvalho, R.R., & Geller, M.J. 1998, AJ, 116, 1573.Google Scholar
De Carvalho, R., Ribeiro, A., Capelato, H., & Zepf, S., 1997, ApJS, 110, 1 Google Scholar
Diaferio, A., Geller, M.J., & Ramella, M., 1994 AJ, 107, 868.Google Scholar
Erickson, L.K., Gottesman, S.T., & Hunter, J.H. Jr. 1999, ApJ, 515, 153.Google Scholar
Heisler, J., Tremaine, S., Bahcall, J.N., 1985, ApJ, 298, 8.Google Scholar
Hernquist, L., Katz, N., & Weinberg, D.H. 1995, ApJ, 442, 57.Google Scholar
Hickson, P., 1982, ApJ, 225, 382.Google Scholar
Mamon, G.A. 1986, ApJ, 307, 426 Google Scholar
Perea, J., Del Olmo, A. & Moles, M. 1990, A&A, 237, 319.Google Scholar
Peterson, S.D., & Shostak, G.S. 1980, ApJ, 241, 61.Google Scholar
Van Moorsel, G.A., 1987, A&A, 176, 13.Google Scholar
Zabludoff, A.I., & Mulchaey, J.S., 1998, ApJ, 496, 39.Google Scholar